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Abstract

In this thesis, we consider two main problems in learning with big data: data in-

tegrity and high dimension. We specifically consider the problem of data integrity

in smart grid as it is of paramount importance for grid maintenance and control.

In addition, data manipulation can lead to catastrophic events. Inspired by this

problem, we then expand the horizon to designing a general framework for stochas-

tic optimization in high dimension for any loss function and any underlying low

dimensional structure. We propose Regularized Epoch-based Admm for Stochas-

tic Optimization in high-dimensioN (REASON). Our ADMM method is based on

epoch-based annealing and consists of inexpensive steps which involve projections

on to simple norm balls. We provide explicit bounds for the sparse optimization

problem and the noisy matrix decomposition problem and show that our conver-

gence rate in both cases matches the minimax lower bound. For matrix decompo-

sition into sparse and low rank components, we provide the first guarantees for any

online method. Experiments show that for both sparse optimization and matrix

decomposition problems, our algorithm outperforms the state-of-the-art methods.

In particular, we reach higher accuracy with same time complexity.
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Chapter 1

Introduction

With new trend in technology, there is the challenge of data deluge in almost any

domain. We have lots of data, in terms of system measurement, image, video,

genetics, social network, etc and the amount just increases. The goal is to use the

data for inference and even control. But as we have more data it does not mean

we have more information. Data might have corruptions. Therefore, ensuring data

integrity is an important task.

In addition, with more data comes more challenges. Although we have more

data, we have a huge number of unknown parameters. The classic approach in

statistics is that with fixed number of parameters p, the sample size n→∞. But in

modern applications in science and engineering we have large scale problems where

both n, p can be very large (possibly p � n) and this calls for high-dimensional

theory where we let both (n, p) → ∞. In high-dimensional statistics we have ex-

ponential explosions in computational complexity and also for a large number of

unknown parameters the sample complexity goes beyond the number of available
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samples. Therefore, for a tractable analysis of the problem with available samples,

additional assumptions are made on the problem structure, i.e., an embedded low

dimensional structure. Examples include sparse vectors, patterned matrices, low

rank matrices, Markov random fields and some assumptions on manifold structure.

Nevertheless, even within the class of tractable problems, high-dimensional opti-

mization is harmed by curse of dimensionality. To be more specific, conventional

optimization methods provide convergence bounds that are a quadratic function

of the dimension. Therefore, their convergence guarantees in high dimension are

disheartening.

To make the challenge even more severe, we should consider another challenge

in big data. That is the volume and velocity of the data we receive, which calls for

learning methods that are fast, cheap and do not require data storage. Therefore,

batch methods are not a good fit for such applications and we need stochastic meth-

ods that can provide a good estimation of the parameter per any noisy sample they

receive. Therefore, we no more have the luxury of noise concentration that batch

optimization benefits from. Hence, the combination of stochastic optimization and

high-dimensional statistics leads to a extremely difficult problem.

In this thesis we consider the challenges of learning with big data. To be more

precise, our goal is to shed light on the problem of big data from two angles. First

we consider the problem of data integrity. This is motivated by the fact that not

all the data we receive is reliable and for some cases believing the data without any
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integrity check can lead to catastrophic events. One prominent case is the case of

data integrity in smart grid. We elaborate on this shortly.

Inspired by the complex problem of data integrity in smart grid, we used it as

our spring board to extend our horizon and consider the general case of stochastic

optimization in high dimension, for any loss function with some mild assumptions.

Hence, our approach can be used for various applications. Our goal is to design a

general method for stochastic optimization method in high-dimensional setting that

is fast and cheap to implement and to provide tight convergence guarantees that

have logarithmic dependence with dimension (this is the minimax optimal rate).

We also compare our method with earlier state-of-the-art methods via experiments.

1.1 Initial Results: Data integrity in Smart Grid

Recently, Gaussian graphical models have been used as a precious tool for modeling

and analyzing various phenomena in diverse fields such as control, cyber security,

biology, sociology, social networks and geology. It all starts with model selection

for the random variables associated to the problem. Model selection means finding

the real underlying Markov graph among a group of random variables based on

samples of those random variables.

Traditionally, the term grid is used to refer to an electricity system that sup-

ports the following four operations: electricity generation, electricity transmission,

electricity distribution, and voltage stability control. In the early days, generation
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was co-located with distribution in what we would now call a micro-grid and the

connections among the micro-grids were meant to transmit energy in case of such

contingencies as shift in the supply/demand balance. After deregulation, however, a

large-scale generation-transmission-distribution network became the substitute for

the traditional generation-distribution co-location. The new network allows con-

sumers to purchase electricity at the cheapest price across the country, as opposed

to the former concept in which consumers were forced to purchase electricity from

local utility companies. Other considerations calling for an overhaul of the electric-

ity system include the reduction of carbon emission, an objective that cannot be

achieved without a significant contribution from the electricity sector. This calls for

a bigger share of the renewable energy resources in the generation mix and a sup-

ply/demand that must be managed more effectively. Management and control of

the grid made increasingly complex by its response to electricity market conditions

are, next to its ability to detect contingencies, the most fundamental attributes

that make it smart.

Automated large scale management requires considerable exchange of informa-

tion, so that the smart grid has become a two-commodity flow—electricity and

information. By utilizing modern information technologies, the smart grid is ca-

pable of delivering power in a more efficient way and responding to wider ranging

conditions.
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Massive amount of measurements and their transmission across the grid by

modern information technology, however, make the grid prone to attacks. Fast and

accurate detection of possibly malicious events is of paramount importance not only

for preventing faults that may lead to blackouts, but also for routine monitoring and

control tasks of the smart grid, including state estimation and optimal power flow.

Fault localization in the nation’s power grid networks is known to be challenging,

due to the massive scale and inherent complexity.

We use model selection to address this crucial matter for smart grid control

and maintenance. We approach false data injection in smart grid via statistical

analysis of underlying structure among data. In order to learn the structure of

the power grid, we utilize the new Gaussian Graphical Model Selection method

called Conditional Covariance Test (CMIT) [Anandkumar et al., 2012] and prove

that in normal conditions this structure follows grid topology. Next we assess that

our method can detect a sophisticated and strong attack as it causes the graphical

model to change. Our approach is the first method that can comprehensively detect

this data manipulation without the need for additional hardware.
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1.2 Main Results:

Stochastic Optimization in High Dimension

Stochastic optimization considers the problem of minimizing a loss function with

access to noisy samples of (gradient of) the function. The goal is to have an estimate

of the optimal parameter (minimizer) per new sample. Therefore, compared to

batch optimization where we have noise concentration, stochastic optimization is a

more challenging problem.

In addition, as discussed earlier, in high dimensional statistics we have p �

n. Therefore in general the problems are not tractable. in order to make the

problem tractable we need to assume low dimensional underlying truth such as

sparse vectors, patterned matrices, low rank matrices, Markov random fields and

some assumptions on manifold structure. Mathematically this is modeled by adding

a regularizer term to the optimization problem. These terms are mostly non-smooth

and hence, make each step of stochastic optimization very expensive. The reason is

that in most cases no closed form solution exists for each step of the optimization

problem.

The alternating direction method of multipliers (ADMM), takes the form of a

decomposition-coordination procedure, in which the solutions to small local sub-

problems are coordinated to find a solution to a large global problem. To be more

precise, ADMM decomposes the optimization problem into two parts; minimizing
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the loss function term and minimizing the regularization term and then links the

two solutions. ADMM can be viewed as an attempt to blend the benefits of dual

decomposition and augmented Lagrangian methods for constrained optimization.

It is a simple but powerful algorithm that is well suited to distributed convex op-

timization, and in particular to problems arising in applied statistics and machine

learning. Nevertheless, stochastic ADMM techniques suffer from the curse of dimen-

sionality, i.e., their convergence rates are proportional to square of the dimension

which is disheartening for high-dimensional problem.

In order to design a general framework for stochastic optimization in high-

dimension that is both fast and cheap as well as enjoys logarithmic dependence to

dimension (and is hence minimax optimal), modify stochastic ADMM such that we

have best of both worlds. We do this an epoch-based approach and by performing

intelligent projections into a norm ball around the optimal value and shrink the

ball after each epoch such that we have error contraction by the end of each epoch.

The norm ball is determined by the nature of the underlying optimal value or hence

the regularizer term. For example, in case of sparse optimization we use `1 norm

projections. It should be noted that we do not have a knowledge of the optimal

parameter and hence use the average of the last epoch estimates as an estimate of

the optimal value. We design our algorithm parameters such that we ensure the

optimal parameter remains feasible during the algorithm. In addition, we prove

that by our choice of parameters, the square error shrinks by half by the end of
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each epoch. Therefore, we halve the radius of the norm ball and can obtain a

logarithmic dependency to the dimension. This is a general framework that can be

applied to any convex optimization problem with some mild assumptions and any

number of regularizers. We provide complete detailed analysis for two infamous

problems: sparse optimization and matrix decomposition into sparse and low rank

parts (also known as robust PCA).

The above simple modifications to ADMM have huge implications for high-

dimensional problems. For sparse optimization, our convergence rate is O( s log d
T

),

for s-sparse problems in d dimensions in T steps. Our bound has the best of both

worlds: efficient high-dimensional scaling (as log d) and efficient convergence rate

(as 1
T

). This also matches the minimax lower bound for the linear model and square

loss function [Raskutti et al., 2011], which implies that our guarantee is unimprov-

able by any (batch or online) algorithm (up to constant factors). For matrix de-

composition, our convergence rate is O((s+r)β2(p) log p/T ))+O(max{s+r, p}/p2)

for a p × p input matrix in T steps, where the sparse part has s non-zero entries

and low rank part has rank r. For many natural noise models (e.g. independent

noise, linear Bayesian networks), β2(p) = p, and the resulting convergence rate is

minimax-optimal. Note that our bound is not only on the reconstruction error, but

also on the error in recovering the sparse and low rank components. These are the

first convergence guarantees for online matrix decomposition in high dimensions.

Moreover, our convergence rate holds with high probability when noisy samples are
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input, in contrast to expected convergence rate, typically analyzed in literature.

See Table 4.1, 4.2 for comparison of this work with related frameworks.

Our proposed algorithms provide significantly faster convergence in high di-

mension and better robustness to noise. For sparse optimization, our method has

significantly better accuracy compared to the stochastic ADMM method and bet-

ter performance than RADAR, based on multi-step dual averaging [Agarwal et al.,

2012b]. For matrix decomposition, we compare our method with the state-of-art

inexact ALM [Lin et al., 2010] method. While both methods have similar recon-

struction performance, our method has significantly better accuracy in recovering

the sparse and low rank components.
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Chapter 2

Preliminaries

2.1 Notation and Terminology

1. A graph G is represented as G(V,E) where V represents the set of vertices

and E represents the edge set.

2. For random variables ⊥ is used to show independence and | symbol is used

for conditioning. i.e., X1 ⊥ X2|X3 means X1 is independent of X2 given X3.

3. In probability theory and statistics, a covariance matrix is a matrix whose

element in the i, j position is the covariance between the i th and j th

elements of a random vector (that is, of a vector of random variables).

4. For every matrix A, Tr(A) represents sum of the diagonal entries of A.

In the sequel, we use lower case letter for vectors and upper case letter for

matrices.‖x‖1, ‖x‖2 refer to `1, `2 vector norms respectively. The term ‖X‖∗ stands
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for nuclear norm of X. In addition, ‖X‖2, ‖X‖F denote spectral and Frobenius

norms respectively. |||X|||∞ stands for induced infinity norm. We use vectorized

`1, `∞ norm for matrices. i.e., ‖X‖1 =
∑
i,j

|Xij|, ‖X‖∞ = max
i,j
|Xij|.

2.2 High Dimensional Statistics

The field of high-dimensional statistics studies data whose dimension is higher than

the dimension of classical multivariate data. In many applications the dimension

of the data is bigger than the sample size. High-dimensional statistical inference

deals with models in which the the number of parameters p is comparable to or

larger than the sample size n. Since it is usually impossible to obtain consistent

procedures unless p/n→ 0, Therefore, for a tractable analysis of the problem with

available samples, a line of recent work has studied models where additional as-

sumptions are made on the problem structure, i.e., an embedded low dimensional

structure. with various types of low-dimensional structure, including sparse vectors,

patterned matrices, low rank matrices, Markov random fields and some assump-

tions on manifold structure. In such settings, a general approach to estimation is

to solve a regularized optimization problem, which combines a loss function mea-

suring how well the model fits the data with some regularization function that

encourages the assumed structure. Accordingly, there are now several lines of work

within high-dimensional statistics, all of which are based on imposing some type of

low-dimensional constraint on the model space and then studying the behavior of
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different estimators. Examples include linear regression with sparsity constraints,

estimation of structured covariance or inverse covariance matrices, graphical model

selection, sparse principal component analysis, low-rank matrix estimation, matrix

decomposition problems and estimation of sparse additive nonparametric models.

The classical technique of regularization has proven fruitful in all of these contexts.

Many well-known estimators are based on solving a convex optimization problem

formed by the sum of a loss function with a weighted regularizer. For example, `0

norm denotes the number of nonzero elements but since `0 is a nonconvex func-

tion, `1 norm is used to ensure sparsity. The reason is that `1 norm is the closest

function to `0 that is convex. As another example, to ensure low rank structure

nuclear norm is used as a regularizer. The intuition is that nuclear norm is sum of

the singular values and minimizing the nuclear norm results in imposing the low

rank structure.

2.3 Graphical Model

Definition 1. Global Markov property: A probability distribution is said to

have global Markov property with respect to a graph if, for any disjoint subsets of

nodes I, J , S such that S separates I and J on the graph, the distribution satisfies

XI ⊥ XJ |XS, i.e., XI is independent of XJ conditioned on XS. This is represented

in Figure 2.1.
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Figure 2.1: Global Markov property: XI ⊥ XJ |XS

Figure 2.2: Local Markov property: Xi ⊥ XV\{i∪N(i)}|XN(i)

Definition 2. Pairwise Markov property: A distribution is pairwise Markov

with respect to a given graph if, for any two nodes i and j in the graph such that

there is no direct link in the graph between i and j, then Xi is independent of Xj

given the states of all of the remaining nodes, i.e., Xi ⊥ Xj|XV\{i,j}.

Definition 3. Local Markov property: A set of random variables is said to have

local Markov property corresponding to a graph [Lauritzen, 1996] if any variable

Xi is conditionally independent of all other variables XV\{i∪N(i)} given its neighbors

13



XN(i), where V \ {i ∪ N(i)} := {j ∈ V : j 6= i, j 6= N(i)} and N(i) := {j ∈ V :

(i, j) ∈ E}. Local Markov property can be seen in Figure 2.2.

Definition 4. Markov Random Field (MRF):Given an undirected graph G =

(V , E), a set of random variables X = (Xv)v∈V form a Markov Random Field with

respect to G if they have the global Markov property. It should be noted that local

Markov property and pairwise Markov property are equivalent and they are a special

case of global Markov property. For a strictly positive probability distribution, the

properties are equivalent and it can be shown that the probability distribution can

be factorized with respect to the graph [Lauritzen, 1996].

One instance of this positivity condition happens in case of jointly Gaussian distri-

butions.

Definition 5. Gaussian Markov Random Field (GMRF): A Gaussian Markov

Random Field (GMRF) is a family of jointly Gaussian distributions, which factor

according to a given graph. Given a graph G = (V,E), with V = {1, ..., p}, con-

sider a vector of Gaussian random variables X = [X1, X2, ..., Xp]
T , where each

node i ∈ V is associated with a scalar Gaussian random variable Xi. A Gaussian

Markov Random Field on G has a probability density function (pdf) that may be

parametrized as

fX(x) ∝ exp[−1

2
xTJx+ hTx]; (2.3.1)
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where J is a positive-definite symmetric matrix whose sparsity pattern corresponds

to that of the graph G. More precisely,

J(i, j) = 0⇐⇒ (i, j) /∈ E. (2.3.2)

The matrix J = Σ−1 is known as the potential or information matrix, the non-

zero entries J(i, j) as the edge potentials, and the vector h as the vertex potential

vector.

Definition 6. Graphical Model: In general, Graph G = (V,E) is called the

Markov graph (graphical model) underlying the joint probability distribution fX(x)

where the node set V represents each random variable Xi and the edge set E is

defined in order to satisfy local Markov property. For a Markov Random Field,

local Markov property states that Xi ⊥ X−{i,N(i)}|XN(i), where XN(i) represents

all random variables associated with the neighbors of i in graph G and X−{i,N(i)}

denotes all variables except for Xi and XN(i).

2.3.1 KullbackLeibler divergence

Definition 7. KullbackLeibler divergence: In probability theory and informa-

tion theory, the KullbackLeibler divergence [Kullback, 1951, 1959, 1987] (also infor-

mation divergence, information gain, relative entropy, or KLIC) is a non-symmetric

measure of the difference between two probability distributions P and Q. Specifically,
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the KullbackLeibler divergence of Q from P , denoted DKL(P ‖ Q), is a measure of

the information lost when Q is used to approximate P [K. P. Burnham, 2002]. KL

measures the expected number of extra bits required to code samples from P when us-

ing a code based on Q, rather than using a code based on P . Typically P represents

the ”true” distribution of data, observations, or a precisely calculated theoretical

distribution. The measure Q typically represents a theory, model, description, or

approximation of P .

For discrete probability distributions P and Q, the KL divergence of Q from P

is defined to be

DKL(P ‖ Q) =
∑
i

ln

(
P (i)

Q(i)

)
(2.3.3)

In words, it is the expectation of the logarithmic difference between the probabilities

P and Q, where the expectation is taken using the probabilities P .

For distributions P and Q of a continuous random variable, KL-divergence is

defined to be the integral [Bishop, 2006]

DKL(P ‖ Q) =

∫ ∞
−∞

ln

(
P (x)

Q(x)

)
p(x)dx (2.3.4)

where p and q denote the densities of P and Q.

In Bayesian statistics the KL divergence can be used as a measure of the infor-

mation gain in moving from a prior distribution to a posterior distribution. If some

new fact Y = y is discovered, it can be used to update the probability distribution
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for X from p(x|I) to a new posterior probability distribution p(x|y, I) using Bayes’

theorem:

p(x|y, I) =
p(y|x, I)p(x|I)

p(y|I)
. (2.3.5)

This distribution has a new entropy

H(p(.|y, I)) =
∑
x

p(x|y, I) log p(x|y, I), (2.3.6)

which may be less than or greater than the original entropy H(p(|I)). However,

from the standpoint of the new probability distribution one can estimate that to

have used the original code based on p(x|I) instead of a new code based on p(x|y, I)

would have added an expected number of bits

DKL(p(.|y, I) ‖ p(.|I)) =
∑
x

p(x|y, I)
log p(x|y, I)

p(x|I)
(2.3.7)

to the message length. This therefore represents the amount of useful information,

or information gain, about X, that we can estimate has been learned by discovering

Y = y.
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2.4 Convex Optimization

A convex optimization problem is one of the form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, ...,m,

where the functions f0, ..., fm : Rn → R are convex, i.e., satisfy fi(αx + βy) ≤

αfi(x) + βfi(y) for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

Convex optimization enjoys the fact that for a convex optimization there is

no spurious local optima, i.e., the local optima is the global optima. In addition,

convex optimization problems can be solved efficiently.

2.4.1 Stochastic Optimization

Stochastic optimization considers the problem of minimizing a loss function with

access to noisy samples of (gradient of) the function. The goal is to have an estimate

of the optimal parameter (minimizer) per new sample.

Consider the optimization problem

θ∗ ∈ arg min
θ∈Ω

E[f(θ, x)], (2.4.1)
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where x ∈ X is a random variable and f : Ω × X → R is a given loss function.

Since only samples are available, we employ the empirical estimate of f̂(θ) :=

1/n
∑

i∈[n] f(θ, xi) in the optimization. For high-dimensional θ, we need to impose

a regularization R(·), and

θ̂ := arg min{f̂(θ) + λnR(θ)},

is the batch optimal solution.

2.4.2 Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers (ADMM) is an algorithm that is in-

tended to blend the decomposability of dual ascent with the superior convergence

properties of the method of multipliers. The algorithm solves problems in the form

minimize f(x) + g(y) subject to Ax+By = c

with variables x ∈ Rn and y ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.

We will assume that f and g are convex. The difference from the usual convex

optimization problem is that the variable x is split into two parts and the cost
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function is separable. As in the method of multipliers, we form the augmented

Lagrangian

Lρ(x, y, z) = f(x) + g(y) + z>(Ax+By − c) +
ρ

2
‖Ax+By − c‖2.

ADMM iterations are the as follows:

xk+1 := arg min
x

Lρ(x, yk, zk),

yk+1 := arg min
y

Lρ(xk+1, y, zk),

zk+1 := zk + ρ(Axk+1 +Byk+1 − c),

where ρ > 0. It is proved that for convex, closed and proper functions f , g ADMM

converges [Boyd et al., 2011].

ADMM is originally a batch method. However, with some modifications it

can also be used for stochastic optimization. Since in stochastic setting we only

have access to noisy samples of gradient, we use an inexact approximation of the

Lagrangian as

L̂ρ,k = f1(xk) + 〈∇f(xk, ζk+1), x〉+ g(y)− z>(Ax+By − c)

+
ρ

2
‖Ax+By − c‖2 +

‖x− xk‖2

2ηk+1

,
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where ηk+1 is a time-varying step size [Ouyang et al., 2013]. Note that the first

term does not appear in ADMM iterates. Convergence rate for stochastic ADMM

is shown in table 4.1. It can be seen that the convergence rate is proportional to

square of dimension which is a disheartening rate in high dimension.

As discussed above, in stochastic ADMM we use noisy samples of gradient.

Therefore, in order to prove convergence for stochastic ADMM, we need a bound on

gradient, i.e., the cost function needs to satisfy an additional assumption: Lipschitz

property.

Definition 8. Lipschitz property: A function f : Ω→ R is said to satisfy the

Lipschitz condition if there is a constant M such that

|f(x)− f(x′)| ≤M‖x− x′‖ ∀ x, x′ ∈ Ω. (2.4.2)

The smallest constant M satisfying (2.4.2) is called Lipschitz constant. Lipschitz

constant can be interpreted as an upper bound on gradient of function f .

Another property that improves the convergence rate is strong convexity.

Definition 9. Strong Convexity: A differentiable function f : Ω→ R is called

strongly convex if there is a constant m > 0 such that

f(x′) ≥ f(x) + 〈∇f(x), x′ − x〉+
m

2
‖x′ − x‖2 ∀ x, x′ ∈ Ω.
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Intuitively, strong convexity is a measure of curvature of the loss function, which

relates the reduction in the loss function to closeness in the variable domain.

In high dimension, we cannot guarantee the above properties globally. Never-

theless we will show that the following locally defined notions suffice.

Definition 10. Local Lipschitz condition: For each R > 0, there is a constant

G = G(R) such that

|f(θ1)− f(θ2)| ≤ G‖θ1 − θ2‖1

for all θ1, θ2 ∈ S such that ‖θ − θ∗‖1 ≤ R and ‖θ1 − θ∗‖1 ≤ R.

Definition 11. Local strong convexity (LSC): The function f : S → R sat-

isfies an R-local form of strong convexity (LSC) if there is a non-negative constant

γ = γ(R) such that

f(θ1) ≥ f(θ2) + 〈∇f(θ2), θ1 − θ2〉+
γ

2
‖θ2 − θ1‖2

2.

for any θ1, θ2 ∈ S with ‖θ1‖1 ≤ R and ‖θ2‖1 ≤ R.
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Chapter 3

Initial Results: Data Integrity in Smart Grid

3.1 Introduction

Among the attributes that make the grid “smart” is its ability to process a massive

amount of data for monitoring, control, and maintenance purposes. In a typi-

cal Transmission System Operator (TSO), the substation Remote Terminal Units

(RTUs) read the status of voltages, currents, and switching states. The RTU data

is redirected in data-packages to the Supervisory Control and Data Acquisition

(SCADA) system via communication channels. In addition, synchronous Phasor

Measurement Units (PMUs) are being massively deployed throughout the grid.

PMUs provide a higher level of detail to the SCADA system (e.g. voltage angle).

The signals from the PMUs are transmitted via the RTU to the SCADA. The State

Estimator (SE) located at the control center aims to find the best overall snapshot

solution based on all measurements.
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Recent monitoring and control schemes rely primarily on PMU measurements;

for example, [Diao et al., May 2009] tries to increase voltage resilience to avoid volt-

age collapse by using synchronized PMU measurements and decision trees and [Zhu

and Giannakis, C. Wei, 2012, He and Zhang, June 2011] rely on PMUs for fault

detection and localization.

The centralization of the data to the State Estimator makes it the back door to

false data injection attacks. Therefore, aforementioned methods can be deluded by

false data injection attacks. Thus, it is crucial to have a mechanism for fast and ac-

curate discovery of malicious tampering; both for preventing the attacks that may

lead to blackouts, and for routine monitoring and control tasks of the smart grid.

The cyber attacks have gained increasing attention over the past years. Unfortu-

nately, there are realistic “stealthy” threats that cannot be detected with current

security modules in the power network and may lead to cascading events, instability

in the system, and blackouts in major areas of the network. For details on stealthy

deception attack, their implementation and serious consequences, see [Kwon et al.,

2013, Kosut et al., 2010, Amin and Giacomoni, 2012, Giani et al., January 2012,

Yao Liu and Reiter, May 2011].

3.1.1 Summary of Results

We have designed a decentralized false data injection attack detection mechanism

that utilizes the Markov graph of the bus phase angles. We utilize the conditional
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Figure 3.1: Flowchart of our detection algorithm

covariance threshold test CMIT [Anandkumar et al., 2012] to learn the structure

of the grid. We show that under normal circumstances, and because of the grid

structure, the Markov graph of voltage angles can be determined by the power grid

graph. Therefore, a discrepancy between calculated Markov graph and learned

structure triggers the alarm. This work was initiated by the authors in [Sedghi and

Jonckheere, 2013].

Because of the connection between the Markov graph of the bus angle measure-

ments and the grid topology, our method can be implemented in a decentralized

manner, i.e. at each sub-network. Currently, sub-network topology is available on-

line and global network structure is available hourly [Zhu and Giannakis]. Not only

by decentralization can we increase the speed and get closer to online detection, but
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we also increase accuracy and stability by avoiding communication delays and syn-

chronization problems when trying to send measurement data between locations far

apart [Zhu et al., 2013, Ancillotti et al., 2013]. Furthermore, we noticeably decrease

the amount of exchanged data to address privacy concerns as much as possible.

We show that our method can detect the most recently designed attack on

the power grid that remains undetected by the traditional bad data detection

scheme [Teixeira et al., 2011] and is capable of deceiving the State Estimator

and damaging power network control, monitoring, demand response, and pricing

schemes [Kosut et al., 2010]. In this scenario, the attacker is equipped with vital

data and has the knowledge of the bus-branch model of the grid. It should be

noted that our method not only detects that the system is under attack, but also

determines the particular set of nodes under the attack. The flowchart is shown in

Figure 3.1.

In addition, we show that our method can detect the situation where the attacker

manipulates reactive power data to lead the State Estimator to wrong estimates

of the voltages. Such an attack can be designed to fake a voltage collapse or

trick the operator to cause a voltage collapse. This latter detection is based on

the linearization of the AC power flow around the steady state. Then using our

algorithm for bus voltages and reactive power rather than bus phase angles and

active power, it readily follows that this latter attack can also be detected.
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3.1.2 Related Work

Although the authors of [Giani et al., January 2012] suggest an algorithm for PMU

placement such that the “stealthy” attack is observable, they report a successful

algorithm only for the 2-node attack and propose empirical approaches for the 3,

4, and 5-node attacks. According to [Giani et al., January 2012], for cases where

more than two nodes are under attack, the complexity of the approach is said to

be “disheartening”. Considering the fact that finding the number of needed PMUs

is NP-hard and that [Giani et al., January 2012] gives an upper bound and uses a

heuristic method for PMU placement, we need to mention for comparison purposes

that our algorithm has no hardware requirements, its complexity does not depend

on the number of nodes under attack, and it works for any number of attacked

nodes. It is also worth mentioning that, even in the original paper presenting

the attack for a relatively small network (IEEE-30), seven measurements from five

nodes are manipulated. Therefore, it seems that the 2-node attack is not the most

probable one.

There has been another line of work dedicated to computing the “security index”

for different nodes in order to find the set of nodes that are most vulnerable to

false data injection attacks [Hendrickx et al., 2014]. Although these attempts are

acknowledged, our method differs greatly from such perspectives as such methods

do not detect the attack state when it happens and they cannot find the set of

nodes that are under attack.
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The dependency graph approach is used in [He and Zhang, June 2011] for topol-

ogy fault detection in the grid. However, since attacks on the State Estimator are

not considered, such methods can be deceived by false data injection. Further-

more, [He and Zhang, June 2011] use a constrained maximum likelihood optimiza-

tion for finding the information matrix, while here an advanced structure learning

method is used that captures the power grid structure better. This is because in

the power grid the edges are not centered but distributed all over the network. This

is discussed in Section 3.2.1.

3.1.3 Bus Phase Angles GMRF

We now apply the preceding to the bus phase angles. The DC power flow model [Abur

and Exposito, 2004] is often used for analysis of power systems in normal op-

erations. When the system is stable, the phase angle differences are small, so

sin(θi − θj) ∼ θi − θj. By the DC power flow model, the system state X can be

described using bus phase angles. The active power flow on the transmission line

connecting bus i to bus j is given by

Pij = bij(Xi −Xj), (3.1.1)
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where Xi and Xj denote the phasor angles at bus i and j respectively, and bij

denotes the inverse of the line inductive reactance. The power injected at bus i

equals the algebraic sum of the powers flowing away from bus i:

Pi =
∑
j 6=i

Pij =
∑
j 6=i

bij(Xi −Xj). (3.1.2)

When buses i and j are not connected, bij = 0. Thus, it follows that the phasor

angle at bus i could be represented as

Xi =
∑
j 6=i

{
bij∑
i 6=j bij

}
Xj +

1∑
j 6=i bij

Pi. (3.1.3)

Eq. (3.1.1) can also be rewritten in matrix form as

P = BX, (3.1.4)

where P = [P1, P2, ..., Pp]
> is the vector of injected active powers, X = [X1, X2, ..., Xp]

>

is the vector of bus phase angles and

B =


−bij if i 6= j,∑

j 6=i bij if i = j.

(3.1.5)

Remark: Note that, because of linearity of the DC power flow model, the above

equations are valid for both the phase angle X together with the injected power
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P and for the fluctuations of the phase angle X together with the fluctuations of

the injected power P around its steady-state value. Specifically, if we let P̃ refer to

the vector of active power fluctuations and X̃ represent the vector of phase angle

fluctuations, we have P̃ = BX̃. In the following, the focus is on the DC power flow

model. Nevertheless, our analysis remains valid if we consider fluctuations around

the steady-state values.

Because of load uncertainty, and under generation-load balance, the injected

power can be modeled as a random variable [Zhang and Lee, 2004]. The injected

power is the sum of many random factors such as load fluctuations, wind turbine

and Photo Voltaic Cell (PVC) output fluctuations, etc. While the independence of

the constituting random variables can be justified, their identical distribution can-

not. Therefore, using the Lyapunov Central Limit Theorem(CLT) [B. De Finetti,

1975, Sec. 7.7.2], which does not require the random variables to be identically

distributed, we can model the injected power as a Gaussian distribution.

Lyapunov CLT: Let {Yi : i = 1, 2, . . . , n} be a sequence of independent

random variables each with finite expected value µi and variance σ2
i . Define s2

n =∑n
i=1 σ

2
i . If the Lyapunov condition1 is satisfied, then

∑n
i=1

(Yi−µi)
sn

converges in

distribution to a standard normal random variable as n goes to infinity.

Considering conventional assumptions in power systems, the Lyapunov condi-

tion is met. As argued in [Sedghi and Jonckheere, 2014], the Gaussian assumption

1The condition requires that ∃δ > 0 such that the random variables |Yi − µi| have mo-
ments of order 2 + δ and the rate of growth of these moments is limited in the sense that

limn→∞

∑n
i=1 E|Yi−µi|

2+δ

s2+δn
= 0.
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is justified in the transmission network. The Gaussian model is also utilized in var-

ious analysis of power networks such as [Kashyap and Callaway, 2010, Schellenberg

et al., 2005, Pang et al., 2012, Dopazo et al., 1975] where n is estimated to be of

order 1000. To exemplify CLT, it is suggested in [Mur-Amada and Salln-Arasanz,

April 2011] that as few as 5 wind turbines would suffice to see CLT in action.

Therefore, for each i, we model Pi in Eq. (3.1.2) with a Gaussian random variable.

Hence the linear relationship in Eq. (3.1.4), together with the fixed phasor at the

slack bus, implies that the phasor angles θi are Gaussian random variables [He and

Zhang, June 2011].

The next step is to find out whether the Xi’s satisfy the local Markov property

and, in the affirmative, to discover the neighbor sets corresponding to each node.

We do this by analyzing Eq. (3.1.3). If there were only the first term, we would

conclude that the set of nodes electrically connected to node i satisfies the local

Markov property, but the second term makes a difference. Below, we argue that

an analysis of the second term of (3.1.3) shows that this term causes some second-

neighbors of Xi to have a nonzero term in matrix J . In addition, for nodes

that are more than two hops apart, Jij = 0. Therefore, as opposed to the claim

in [He and Zhang, June 2011], a second-neighbor relationship does exist in matrix

J . The second neighbor property may result in additional edges in the Markov

graph between the nodes that are second neighbors in the grid graph.
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As stated earlier, the powers injected at different buses have Gaussian distri-

bution. We can assume that they are independent and without loss of general-

ity they are zero mean. Therefore, the probability distribution function for P is

fP (P ) ∝ e−
1
2
P>P . Since P = BX, we have fX(X) ∝ e−

1
2
X>B>BX . Recalling the

definition of the probability distribution function for jointly Gaussian random vari-

ables in (2.3.1), we get J = BTB. Let d(i, j) represent the hop distance between

nodes i and j in the power grid graph G. By definition of matrix B, this leads to

some nonzero Jij entries for d(i, j) = 2. In addition, we state the following:

Proposition 1. Assume that the powers injected at the nodes are Gaussian and

mutually independent. Then

Jij = 0, ∀ d(i, j) > 2.

Proof. We argue by contradiction. Assume Jij 6= 0 for some d(i, j) > 2. Since

Jij =
∑

k BikBjk, it follows that ∃ k s.t. Bik 6= 0, Bjk 6= 0. By (3.1.5), Bik 6= 0

implies d(i, k) = 1. From there on, the triangle inequality implies that d(i, j) ≤

d(i, k) + d(k, j) = 1 + 1 = 2, which contradicts the assumption d(i, j) > 2. �

It was shown in [Sedghi and Jonckheere, 2014] that for some graphs, the second-

neighbor terms are smaller than the terms corresponding to the immediate elec-

trical neighbors of Xi. More precisely, it was shown that for lattice-structured

grids, this approximation falls under the generic fact of the tapering off of Fourier

coefficients [Sedghi and Jonckheere, 2014]. Therefore, we can approximate each
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neighborhood with the immediate electrical neighbors. We can also proceed with

the exact relationship. For simplicity, we opt for the first-neighbor analysis. We

explain shortly why CMIT works with this approximation as well.

Note that our detection method relies on the graphical model of the variables.

It is based on the fact that the Markov graph of bus phase angles changes under an

attack. CMIT is tuned with correct data and we prove that in case of attack, the

Markov graph of compromised data does not follow the Markov graph of correct

data. Hence, we can tune CMIT by either the exact relationship or the approximate

Markov graph. In both cases, the output in case of attack is different from the

output tuned with correct data. Therefore, CMIT works for both approximate and

exact neighborhoods.

3.2 Structure Learning

In the context of graphical models, model selection means finding the exact Markov

graph underlying a group of random variables based on samples of those random

variables. There are two main classes of methods for learning the structure of

the underlying graphical model, convex methods and non-convex methods. The

`1-regularized maximum likelihood estimators are the main class of convex meth-

ods [Friedman et al., 2007, Ravikumar et al., 2011, Janzamin and Anandkumar,

2012, 2014]. In these methods, the inverse covariance matrix is penalized with

a convex `1-regularizer in order to encourage sparsity in the estimated Markov
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Algorithm 1 CMIT (xn; ξn,p, η) for structure learning using samples xn [Anand-
kumar et al., 2012]

Initialize Ĝn
p = (V, ∅)

For each i, j ∈ V ,
if minS⊂V \{i,j}

|S|≤η
Σ̂(i, j|S) > ξn,p,

then
add (i, j) to the edge set of Ĝn

p .
end if
Output: Ĝn

p

graph structure. The other types of methods are the non-convex or greedy meth-

ods [Anandkumar et al., 2012]. In our work [Sedghi and Jonckheere, 2013, 2014,

2015], we use the latter methods.

3.2.1 Conditional Covariance Test

In order to learn the structure of the power grid, we utilize the Gaussian Graphical

Model Selection method called CMIT [Anandkumar et al., 2012]. CMIT estimates

the structure of the underlying graphical model given i.i.d. samples of the random

variables. CMIT is shown in Algorithm 1.

In Algorithm 1, the output is an edge set corresponding to graph G given n i.i.d.

samples xn, each of which has p variables (corresponding to vertices), a threshold

ξn,p (that depends on both p and n) and a constant η ∈ N, which is related to the

local vertex separation property (described later). In our case, each one of the p

variables represents a bus phase angle.
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The sufficient condition for output of CMIT to have structural consistency with

the underlying Markov graph among variables is that the graph has to satisfy

local separation property and walk-summability [Anandkumar et al., 2012]. An

ensemble of graphs has the (η, γ)-local separation property if for any (i, j) /∈ E(G),

the maximum number of paths between i and j of length at most γ does not exceed

η. A Gaussian model is said to be α-walk summable if ||R̄|| ≤ α < 1, where

R̄ = [|rij|] and ||.|| denotes the spectral or 2-norm of a matrix [Anandkumar et al.,

2012]. R = [rij] is the matrix of partial correlation coefficients; it vanishes on the

diagonal entries and on the non-diagonal entries it is given by

rij ,
Σ(i, j|V \ {i, j})√

Σ(i, i|V \ {i, j})Σ(j, j|V \ {i, j})

=− J(i, j)√
J(i, i)J(j, j)

. (3.2.1)

rij, the partial correlation coefficient between variables Xi and Xj for i 6= j, mea-

sures their conditional covariance given all other variables [Lauritzen, 1996].

Regardless of whether the exact or approximate neighborhood relationship holds,

the Markov graph of the bus phase angles is an example of bounded local path

graphs that satisfy the local separation property. We also checked the analyzed

networks for the walk-summability condition. As shown in (3.2.1) and the defi-

nition of walk-summability, this property depends only on matrix J and thus on
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the topology of the grid. The walk-summability does not depend on the operating

point of the grid.

It is shown in [Anandkumar et al., 2012] that, under walk-summability, the effect

of faraway nodes on the covariance decays exponentially with the distance and the

error in approximating the covariance by local neighboring decays exponentially

with the distance. Hence by correct tuning of threshold ξn,p and with enough

samples, we expect the output of CMIT to follow the grid structure.

The computational complexity of CMIT is O(pη+2), which is efficient for small

η [Anandkumar et al., 2012]. η is the parameter associated with local separa-

tion property described above. The sample complexity associated with CMIT

is n = Ω(J−2
min log p), where Jmin is the minimum absolute edge potential in the

model [Anandkumar et al., 2012].

It is worth mentioning that since we use CMIT for structure learning of pha-

sor data, our method is robust against measurement noise. The reason is that

CMIT analyzes conditional covariance of its input data. Since input data is Gaus-

sian, the conditional covariance can be found from covariance matrix for phasor

data, i.e. Σ(X,X) (see Eq. 3.2.2). Let N be the sum of the measurement noise

and systematic errors. Both systematic errors and measurement noise are inde-

pendent of the measured values. Also, we know that E(X) = 0. Therefore,

Σ(X + N,X + N) = Σ(X,X) + Σ(N,N). Note that in CMIT we only look at

pairs (i, j) such that i 6= j. Therefore as long as Σ(N,N) has a diagonal form,
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this error does not influence our performance. This is the case when errors at dif-

ferent locations in the network are independent of each other. Measurement noise

meets this criterion. Moreover, if systematic error in the network has a diagonal

covariance matrix Σ(N,N), it also does not impact our method. Even if systematic

errors do not have a diagonal covariance but remain the same with time, they can

be detected and compensated during an initial training phase when we are sure the

system is not under the attack.

CMIT distributes the edges fairly uniformly across the nodes, while the `1

method tends to cluster all the edges together among the “dominant” variables

leading to a densely connected component and several isolated points [Anandku-

mar et al., 2012] and thus a disconnected graph. Therefore, the `1 method has

some limitations in detecting the structure of a connected graph. The power grid

transmission network is a connected graph where the edges are distributed over the

network. Therefore, CMIT is more suitable for detecting the structure of the power

grid.

3.2.2 Decentralization

We want to find the Markov graph of our bus phasor measurements. The con-

nection between electrical connectivity and correlation (Proposition 1) helps us to

decentralize our method to a great extent. The power network in its normal oper-

ating condition consists of different areas connected together via border nodes. A
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border node is any node that is also connected to a node from a different area as

depicted in [bor, 2014]. Therefore, we decompose our network into these sub-areas.

Our method can be performed locally in the sub-networks. The sub-network con-

nection graph is available online from the protection system at each sub-network

and can be readily compared with the bus phase angle Markov graph. In addition,

only for border nodes we need to consider their out-of-area neighbors as well. This

can be done either by solving the power flow equations for that border link or by

receiving measurements from neighbor sub-networks. Therefore, we run CMIT for

each sub-graph to figure out its Markov graph. Then we compare it with online

network graph information to detect false data injection attacks.

This decentralization reduces complexity and increases speed. Our decentralized

method is a substitute for considering all measurements throughout the power grid,

which requires a huge amount of data exchange, computation, and overhead. In

addition to having fewer nodes to analyze, this decentralization leads us to a smaller

η and greatly reduces computational complexity, which makes our method capable

of being executed in very large networks. Furthermore, since structure learning

is performed locally, faraway relationships created by nonlinearities—ignored in

Prop. 1 but intrinsic to power systems—are mitigated, hence our neighborhood

assumptions are justified. Last but not least, utility companies are not willing to

expose their information for economical competition reasons and there have been

several attempts to make them do that [Rajagopalan et al., 2011]. Thus it is
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desired to reduce the amount of data exchange between different areas and our

method adequately fulfills this preference.

It should be noted that the measurement vector X analyzed in our work is a

mixture of measurements from PMUs and State Estimator output corresponding

to the same time. This is achieved as follows. PMUs use GPS-sync time stamp

and State Estimator measurements in SCADA are labeled with local time stamp.

Since our method is performed locally, it has two advantages. First, as discussed

earlier, it avoids large delays in communication network. Second, we can use the

local time stamps from State Estimator outputs. We do not require the high rate

of measurement from PMUs for our detection scheme and only consider the PMU

samples at the time we have State Estimator samples. Since both data have time

stamps, we are able to form the measurement vector X with measurement data

from the same time.

3.2.3 Online Calculations

For fast monitoring of the power grid, we need an on-line algorithm. As we show in

this section, our algorithm can be developed as an iterative method that processes

new data without the need for reprocessing earlier data. Here, we derive an iterative
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formulation for the sample covariance matrix. Then we use it to calculate the

conditional covariance using

Σ̂(i, j|S) := Σ̂(i, j)− Σ̂(i, S)Σ̂−1(S, S)Σ̂(S, j). (3.2.2)

As we know, in general,

Σ = E[(X − µ)(X − µ)>] = E[XX>]− µµ>.

Let Σ̂(n)(X) denote the sample covariance matrix for a vector X of p elements from

n samples and let µ̂(n)(X) be the corresponding sample mean. In addition, let X(i)

be the ith sample of our vector. Then we have

Σ̂(n)(X) =
1

n− 1

(
n∑
i=1

X(i)X(i)>
)
− µ̂(n)µ̂(n)> . (3.2.3)

Therefore,

Σ̂(n+1)(X) =
1

n

[
n∑
i=1

X(i)X(i)> +X(n+1)X(n+1)>
]

(3.2.4a)

− µ̂(n+1)µ̂(n+1)> ,

µ̂(n+1) =
1

n+ 1
[nµ̂(n) +X(n+1)]. (3.2.4b)
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By keeping the first term in (3.2.3) and the sample mean (3.2.4b), our updating

rule is (3.2.4a). Thus, we revise the sample covariance as soon as any bus phasor

measurement changes and leverage it to reach the conditional covariances needed

for CMIT. It goes without saying that if the system demand and structure does

not change and the system is not subject to false data injection attack, the voltage

angles at nodes remain the same and there is no need to run any algorithm.

3.3 Stealthy Deception Attack

The most recent and most dreaded false data injection attack on the power grid

was introduced in [Teixeira et al., 2011]. It assumes knowledge of the bus-branch

model and it is capable of deceiving the State Estimator. For a p-bus electric

power network, the l = 2p− 1 dimensional state vector x is [θ>, V >]>, where V =

[V1, ..., Vp]
> is the vector of voltage bus magnitudes and θ = [θ2, ..., θp]

> the vector

of phase angles. It is assumed that the nonlinear measurement model for the state

estimation is z = h(x) + ε, where h(.) is the measurement function, z = [z>P , z
>
Q]> is

the measurement vector consisting of active and reactive power flow measurements

and ε is the measurement error. H(xk) := dh(x)
dx
|x=xk denotes the Jacobian matrix of

the measurement model h(x) at xk. The goal of the stealthy deception attacker is to

compromise the measurements available to the State Estimator (SE) as za = z+a,

where za is the corrupted measurement vector and a is the attack vector. The vector

a is designed such that the SE algorithm converges and the attack a is undetected
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by the Bad Data Detection scheme. Then it is shown that, under the DC power

flow model, such an attack can only be performed locally with a ∈ Im(H), where

H = HPθ is the matrix connecting the vector of bus injected active powers to the

vector of bus phase angles, i.e., P = HPθθ. The attack is shown in Figure 3.2.

3.4 Stealthy Deception Attack Detection

In this Section, we show that our method can detect the aforementioned stealthy

deception attack despite the fact that it remains undetected by the traditional Bad

Data Detection scheme. The fundamental idea behind our detection scheme is that

of structure learning. Our learner, CMIT, is first tuned with correct data, which

corresponds to the grid graph. Therefore, any attack that changes the structure

alters the output of CMIT and this triggers the alarm. Let us consider the attack

more specifically. As we are considering the DC power flow model and all voltage

magnitudes are normalized to 1 p.u., the state vector introduced in [Teixeira et al.,

Figure 3.2: Power grid under a cyber attack
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2011] reduces to the vector of voltage angles, X. Since a ∈ Im(H), ∃ d such that

a = Hd and

za = z + a = H(X + d) = HXa,

where Xa represents the vector of angles when the system is under attack, za

is the attacked measurement vector, and X is the correct phasor angle vector.

Considering (3.1.2), we have Hij = −bij for i 6= j and Hii =
∑

i 6=j bij, where bij

denotes the inverse of the line inductive reactance. We have

Xa = X + d = H−1P +H−1a = H−1(P + a). (3.4.1)

As the definition of matrix H shows, it is of rank p− 1. Therefore, the above H−1

denotes the pseudo-inverse of matrix H. Another way to address this singularity is

to remove the row and the column associated with the slack bus. From (3.4.1), we

get

Σ(Xa, Xa) = H−1[Σ(P + a, P + a)]H−1T

= H−1[Σ(P, P ) + Σ(a, a)]H−1T .
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The above calculation assumes that the attack vector is independent of the cur-

rent measurement values in the network, as demonstrated in the definition of the

attack [Teixeira et al., 2011].

An attack is considered successful if it causes the operator to make a wrong

decision. For that matter, the attacker would not insert just one wrong sample. In

addition, if the attack vector remains constant, it does not cause any reaction. This

eliminates the case of constant attack vectors. Therefore, the attacker is expected

to insert non-constant vectors a during some samples. Thus Σ(a, a) 6= 0 and

Σ(Xa, Xa) 6= Σ(X,X). (3.4.2)

It is not difficult to show that, if we remove the assumption on independence of

attack vector and the injected power, (3.4.2) still holds.

Considering (3.4.2) and the fact that matrix inverse is unique, it follows that,

in case of an attack, the new Σ−1 will not be the same as the network information

matrix in normal condition, i.e., Σ−1(Xa, Xa) 6= Jnormal, and as a result, the output

of CMIT will not follow the grid structure. We use this mismatch to trigger the

alarm. It should be noted that acceptable load changes do not change the Markov

graph and as a result do not lead to false alarms. The reason is that such changes

do not falsify the DC power flow model and the Markov graph will continue to

follow the defined information matrix. After the alarm is triggered, the next step

is to find which nodes are under attack.
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3.4.1 Detecting the Set of Attacked Nodes

We use the correlation anomaly metric [Ide T. Lozano, 2009] to find the attacked

nodes. This metric quantifies the contribution of each random variable to the

difference between two probability densities while considering the sparsity of the

structure. The Kullback-Leibler (KL) divergence is used as the measure of the

difference. As soon as an attack is detected, we use the attacked information

matrix and the information matrix corresponding to the current topology of the

grid to compute the anomaly score for each node. The nodes with highest anomaly

scores are announced as the nodes under attack. We investigate the implementation

details in the next section.

It should be noted that the attack is performed locally and because of the local

Markov property, we are certain that no nodes from other sub-graphs contribute to

the attack.

We should emphasize that the considered attack assumes the knowledge of the

system bus-branch model. Therefore, the attacker is equipped with very critical

information. Yet, we can mitigate such an “intelligent” attack.

3.4.2 Reactive Power versus Voltage Amplitude

As mentioned before, with similar calculations, we can consider the case where the

attacker manipulates reactive power data to lead the State Estimator to wrong

estimates of the voltage. Such an attack can be designed to fake a voltage collapse
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or trick the operator to cause a change in the normal state of the grid. For example,

if the attacker fakes a decreasing trend in the voltage magnitude in some part of

the grid, the operator will send more reactive power to that part and thus this

could cause voltage overload/underload. At this point, the protection system would

disconnect the corresponding lines. This could lead to outages in some areas and in

a worse scenario to overloading in other parts of the grid that might cause blackouts

and cascading events.

The detection can be done by linearization of the AC power flow and by consid-

ering the fluctuations around steady state. Then pursuing our algorithm, it readily

follows that such an attack can also be detected with a similar approach to the one

developed here for bus phase angles and active power.

In the rest of this section, we show how this analogy can be established. The

AC power flow states that the active power and the reactive power flowing from

bus i to bus j are, respectively,

Pij = GijV
2
i −GijViVj cos(θi − θj) + bijViVj sin(θi − θj),

Qij = bijV
2
i − bijViVj cos(θi − θj)−GijViVj sin(θi − θj),

where Vi and θi are the voltage magnitude and phase angle, resp., at bus i and

Gij and bij are the conductance and susceptance, resp., of line ij. From [Banirazi
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and Jonckheere, 2010], we obtain the following approximation of the AC fluctuating

power flow:

P̃ij = (bijV iV j cos θij)(θ̃i − θ̃i),

Q̃ij = (2bijV i − bijV j cos θij)Ṽi − (bijV i cos θij)Ṽj,

where an overbar denotes the steady-state value, a tilde means the fluctuation

around the steady-state value, and θij = θi − θj. These fluctuating values due

to renewables and variable loads justify the utilization of probabilistic methods in

power grid problems.

Now assuming that for the steady-state values of the voltages we have V i =

V j ' 1 p.u. (per unit) and the fluctuations in angles are about the same such that

cos θij = 1, we have

P̃ij = bij(θ̃i − θ̃j), (3.4.3a)

Q̃ij = bij(Ṽi − Ṽj). (3.4.3b)

It is clear from (3.4.3a)-(3.4.3b) that we can follow the same approach we had

about active power and voltage angles with reactive power and voltage magnitudes,

respectively.

It can be argued that, as a result of uncertainty, the aggregate reactive power

at each bus can be approximated as a Gaussian random variable and, because of
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Figure 3.3: Detection rate for IEEE-14 bus system

Eq. (3.4.3b), the voltage fluctuations around the steady-state value can be approx-

imated with Gaussian random variables. Therefore, the same path of approach as

for phase angles can be followed to show the GMRF property for voltage ampli-

tudes. Comparing (3.4.3b) with (3.1.1) makes it clear that the same matrix, i.e.,

matrix B developed in Section 3.1.3, is playing the role of correlating the voltage

amplitudes. Therefore, assuming that the statistics of the active and reactive power

fluctuations are similar, the underlying graph is the same. This can readily be seen

by comparing (3.4.3a) and (3.4.3b).

3.5 Simulation

Training the System We consider IEEE-14 bus system as well as IEEE-30 bus

system. First, we feed the system with Gaussian demand and simulate the power

grid. We use MATPOWER [Zimmerman et al., Feb. 2011] for solving the DC

power flow equations for various demand and use the resulting angle measurements

as the input to CMIT. We leverage YALMIP [Lofberg, 2004] and SDPT3 [Toh et al.,
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1999] to run CMIT in MATLAB. With the right choice of parameters and threshold

ξn,p of CMIT, and enough measurements, the Markov graph should follow the grid

structure. We use the edit distance between two graphs for tuning the threshold

ξn,p. The edit distance between two graphs reveals the number of edges that exist

in only one of the two graphs.

Detecting Attack State After the threshold ξn,p is set, our detection algorithm

works in the following manner. Each time the procedure is initiated, i.e., when

any PMU angle measurement or State Estimator output changes, it updates the

conditional covariances Σ̂(i, j|S) based on new data, runs CMIT and checks the

edit distance between the Markov graph of phasor data and the grid structure. A

discrepancy triggers the alarm. Subsequently to an alarm, the system uses anomaly

metric to find all the buses under the attack. The flowchart of our method is shown

in Figure 3.1.

Next, we introduce the stealthy deception attack on the system. The attack is

designed according to the description in [Teixeira et al., 2011], i.e., it is a random

vector such that a ∈ Im(H). The attack is claimed to be successful only if performed

locally on connected nodes. Having this constraint in mind, for IEEE-14 test case

the maximum number of attacked nodes is 6 and for IEEE-30 bus system this

number is 8. For the IEEE-14 network, we consider the cases where 2 to 6 nodes

are under attack. For the IEEE-30 network, we consider the cases where 2 to 8

nodes are under attack. For each case and for each network, we simulate all possible
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attack combinations. This is to make sure we have checked our detection scheme

against all possible stealthy deception attacks. Each case is repeated 1000 times

for different attack vector values.

When the attacker starts tampering with the data, the corrupted samples are

added to the sample bin of CMIT and are therefore used in calculating the sample

covariance matrix. With enough corrupted samples, our algorithm can get arbi-

trarily close to 100% successful in detecting all cases of attacks discussed above, for

both IEEE-14 and IEEE-30 bus systems. This is shown in Figure 3.3 for IEEE-14

bus system. The detection rate is averaged over all possible attack scenarios. The

reason behind the trend shown in Figure 3.3 is that first, for a very small number

of corrupted measurements, the Markov graph follows the true information matrix

and then, for a higher number of compromised measurements, the Markov graph

follows the random relationship that the attacker is producing. When the number

of compromised samples increases, they gain more weight in the sample covariance,

and the chance of a change in the Markov graph increases. It can be seen that even
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Figure 3.4: Anomaly score for IEEE-14 bus system. Nodes 4, 5, 6 are under attack;
Attack size is 0.7.
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for a small number of corrupted measurements, our method presents a good perfor-

mance: the detection rate is 90% with 30 corrupted samples. The minimum number

of corrupted samples to get almost 100% detection rate for IEEE-14 bus system

is 130 and it is 50 for IEEE-30 bus system. Since IEEE-30 is more sparse than

IEEE-14 bus system, our method performs more efficiently in the former case. Yet,

for a 60 Hz system, the detection speed for IEEE-14 bus system is quite amazing

as well.

Identifying Nodes under Attack The next step is to find which nodes are

under attack. As stated earlier, we use anomaly score metric [Ide T. Lozano, 2009]

to detect such nodes. As an example, Figure 3.4 shows the anomaly score plot for

the case where nodes 4, 5 and 6 are under attack2. It means that a random vector is

added to the measurements at these nodes. This attack is repeated 1000 times for

different values building an attack size of 0.7. The attack size refers to the expected

value of the Euclidean norm of the attack vector a.

2The numbering system employed here is the one of the published IEEE-14 system available
at https://www.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm
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Simulation results show that as the attack size increases, the difference between

the anomaly scores of the nodes under the attack and the uncompromised nodes

increases and, as a result, it becomes easier to pinpoint the attacked nodes. For

example, Figure 3.5 compares the cases where the attack size is 1, 0.7 and 0.5 for

the attack scenario where nodes 4, 5, 6 are under attack. It should be noted that in

order for an attack to be successful in misleading the TSO, the attack size should

not be too small. More specifically, the attacker wants to make a change in the

system state such that the change is noticeable with the hope that this would result

in the wrong reaction of the TSO. If the value of the system state under the attack is

close to its real value, the system is not considered under the attack as it continues

its normal operation. It can be seen that, even for the smallest possible attack

size that would normally not lead the operator to react, the anomaly score plot

will remain reliable. For example, in the considered attack scenario, the anomaly

plot performs well even for an attack size of 0.3, while it seems that a potentially

successful attack under normal standards needs a bigger attack size.

Setting up Anomaly Score Threshold Setting the threshold for anomaly score

is another important aspect of the detection algorithm. As discussed earlier, our

scheme has two major parts. First, detection of attack state, i.e. to declare if the

system is under attack. Second, the identification of the attacked nodes in case of an

attack state. In Figure 3, we analyzed the detection rate of the “attack state” versus

the number of corrupted samples. In Figure 4 and 5, we discussed how normalized
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anomaly score changes with different attack sizes. Now, we use this intuition to

design the threshold for anomaly score. In case of “attack state” we calculate

the normalized anomaly score for each node. For any node, if this benchmark is

greater than the threshold, the node is considered to be under attack. In this

context, we define the “Node Detection Ratio (NDRo)” as the ratio of the number

of attacked nodes that are correctly labeled as attacked to the total number of

attacked nodes. Consequently, the “False Alarm Ratio (FARo),” not to be confused

with the False Alarm rate (FAR), refers to the number of uncompromised nodes

that are mislabeled as under attack to the total number of uncompromised nodes.

As in detection theory, there is a trade-off in designing this threshold value. Lower

threshold values result in higher NDRo and higher FARo and vice versa. Since our

goal is to detect all attacked nodes, we design the threshold such that the NDRo is

approximately 100% with a very low FARo. To design the threshold, we repeat the

simulation discussed for Figures 4 and 5 for five different sets of attacked nodes, the

three discussed attack sizes, and repeat each attack size 100 times. As can also be

seen in the above plots, with a threshold of 0.3 for all attacked nodes, the normalized

anomaly score is above the threshold. Next, we use this threshold in all possible

sets of attacked nodes on IEEE-14 bus system with a attack size of 0.7 and repeat it

50 times for each set. Simulation results show that this threshold guarantees nearly

100% NDRo with a very low FARo of 3.82×10−5. The reason is that anomaly score
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provides a precise statistical analysis of the nodes that contribute to the mismatch.

Hence, we can obtain 100% detection rate with a very low FARo.

3.6 Discussion and Conclusion

We have proposed a decentralized false data injection attack detection scheme that

is capable of detecting the most recent stealthy deception attack on power grid. To

the best of our knowledge, our remedy is the first to comprehensively detect this

sophisticated attack. In addition to detecting the attack state, our algorithm is

capable of pinpointing the set of attacked nodes. Although [Giani et al., January

2012] considers the same attack on the power network, considerable progress is

made in our approach versus the one in [Giani et al., January 2012]. In both

cases, the goal is to detect the attack. While [Giani et al., January 2012] seeks

a PMU placement method, our method does not require additional hardware but

rather performs statistical structure learning on the measurement data. In general,

both PMU placement and structure learning are NP hard. However, the use of

common knowledge of the grid structure helps us reach a polynomial time solution.

The power network structure is a sparse graph that satisfies the local separation

property and the walk-summability. For details on how these properties reduce the

general NP hard problem to a tractable polynomial time problem, see [Anandkumar

et al., 2012].
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As stated earlier, the computational complexity of our method is polynomial and

the decentralized property makes our scheme suitable for huge networks, yet with

bearable complexity and run time. In addition, our method is capable of detecting

attacks that manipulate reactive power measurements to cause inaccurate voltage

amplitude data. Such attack scenario can lead to, or mimic a voltage collapse.

In conclusion, we have introduced change detection for the graphical model

of a power system and showed that it can be used to detect data manipulation.

Our method protects the power system against a large class of false data injection

attacks, which is of paramount importance for current and future grid reliability,

security, and stability.
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Chapter 4

Stochastic Optimization in High Dimension

4.1 Introduction

Stochastic optimization techniques have been extensively employed for online ma-

chine learning on data which is uncertain, noisy or missing. Typically it involves

performing a large number of inexpensive iterative updates, making it scalable

for large-scale learning. In contrast, traditional batch-based techniques involve far

more expensive operations for each update step. Stochastic optimization has been

analyzed in a number of recent works, e.g., [Shalev-Shwartz, 2011, Boyd et al., 2011,

Agarwal et al., 2012b, Wang et al., 2013a, Johnson and Zhang, 2013, Shalev-Shwartz

and Zhang, 2013].

The alternating direction method of multipliers (ADMM) is a popular method

for online and distributed optimization on a large scale [Boyd et al., 2011], and is em-

ployed in many applications, e.g., [Wahlberg et al., 2012], [Esser et al., 2010], [Mota

et al., 2012]. It can be viewed as a decomposition procedure where solutions to
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sub-problems are found locally, and coordinated via constraints to find the global

solution. Specifically, it is a form of augmented Lagrangian method which applies

partial updates to the dual variables. ADMM is often applied to solve regularized

problems, where the function optimization and regularization can be carried out

locally, and then coordinated globally via constraints. Regularized optimization

problems are especially relevant in the high dimensional regime since regularization

is a natural mechanism to overcome ill-posedness and to encourage parsimony in

the optimal solution, e.g., sparsity and low rank. Due to the efficiency of ADMM

in solving regularized problems, we employ it in our work.

In our work [Sedghi et al., 2014b,a], we design a modified version of the stochas-

tic ADMM method for high-dimensional problems. We first analyze the simple

setting, where the optimization problem consists of a loss function and a single reg-

ularizer, and then extend to the multi-block setting with multiple regularizers and

multiple variables. For illustrative purposes, for the first setting, we consider the

sparse optimization problem and for the second setting, the matrix decomposition

problem respectively. Note that our results easily extend to other settings, e.g.,

those in Negahban et al. [2012].

We consider a simple modification to the (inexact) stochastic ADMM method [Ouyang

et al., 2013] by incorporating multiple steps or epochs, which can be viewed as a

form of annealing. We establish that this simple modification has huge implications

in achieving tight convergence rates as the dimensions of the problem instances
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scale. In each iteration of the method, we employ projections on to certain norm

balls of appropriate radii, and we decrease the radii in epochs over time. The idea

of annealing was first introduced by Agarwal et al. [2012b] for dual averaging. Yet,

that method cannot be extended for multivariable cases.

For instance, for the sparse optimization problem, we constrain the optimal

solution at each step to be within an `1-norm ball of the initial estimate, obtained

at the beginning of each epoch. At the end of the epoch, an average is computed

and passed on to the next epoch as its initial estimate. Note that the `1 projection

can be solved efficiently in linear time, and can also be parallelized easily [Duchi

et al., 2008].

For matrix decomposition with a general loss function, the ADMM method

requires multiple blocks for updating the low rank and sparse components. We

apply the same principle and project the sparse and low rank estimates on to `1

and nuclear norm balls, and these projections can be computed efficiently.

Theoretical implications: The above simple modifications to ADMM have

huge implications for high-dimensional problems. For sparse optimization, our con-

vergence rate is O( s log d
T

), for s-sparse problems in d dimensions in T steps. Our

bound has the best of both worlds: efficient high-dimensional scaling (as log d)

and efficient convergence rate (as 1
T

). This also matches the minimax lower bound

for the linear model and square loss function [Raskutti et al., 2011], which im-

plies that our guarantee is unimprovable by any (batch or online) algorithm (up

58



to constant factors). For matrix decomposition, our convergence rate is O((s +

r)β2(p) log p/T )) +O(max{s+ r, p}/p2) for a p× p input matrix in T steps, where

the sparse part has s non-zero entries and low rank part has rank r. For many

natural noise models (e.g. independent noise, linear Bayesian networks), β2(p) = p,

and the resulting convergence rate is minimax-optimal. Note that our bound is not

only on the reconstruction error, but also on the error in recovering the sparse and

low rank components. These are the first convergence guarantees for online matrix

decomposition in high dimensions. Moreover, our convergence rate holds with high

probability when noisy samples are input, in contrast to expected convergence rate,

typically analyzed in literature. See Table 4.1, 4.2 for comparison of this work with

related frameworks.

Practical implications: The proposed algorithms provide significantly faster

convergence in high dimension and better robustness to noise. For sparse opti-

mization, our method has significantly better accuracy compared to the stochas-

tic ADMM method and better performance than RADAR, based on multi-step

dual averaging [Agarwal et al., 2012b]. For matrix decomposition, we compare our

method with the state-of-art inexact ALM [Lin et al., 2010] method. While both

methods have similar reconstruction performance, our method has significantly bet-

ter accuracy in recovering the sparse and low rank components.
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Related Work: ADMM: Existing online ADMM-based methods lack high-

dimensional guarantees. They scale poorly with the data dimension (as O(d2)),

and also have slow convergence for general problems (as O( 1√
T

)). Under strong

convexity, the convergence rate can be improved to O( 1
T

) but only in expectation:

such analyses ignore the per sample error and consider only the expected conver-

gence rate (see Table 4.1). In contrast, our bounds hold with high probability.

Some stochastic ADMM methods, Goldstein et al. [2012], Deng [2012] and Luo

[2012], provide faster rates for stochastic ADMM, than the rate noted in Table 4.1.

However, they require strong conditions which are not satisfied for the optimization

problems considered here, e.g., Goldstein et al. [2012] require both the loss function

and the regularizer to be strongly convex.

It is also worth mentioning that our method provides error contraction, i.e.,

we can show error shrinkage after specific number of iterations whereas no other

ADMM based method can guarantee this.

Related Work: Sparse Optimization: For the sparse optimization problem,

`1 regularization is employed and the underlying true parameter is assumed to be

sparse. This is a well-studied problem in a number of works (for details, refer

to [Agarwal et al., 2012b]). Agarwal et al. [2012b] propose an efficient online method

based on annealing dual averaging, which achieves the same optimal rates as the

ones derived in our work. The main difference is that our ADMM method is capable
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of solving the problem for multiple random variables and multiple conditions while

their method cannot incorporate these extensions.

Related Work: Matrix Decomposition: To the best of our knowledge, on-

line guarantees for high-dimensional matrix decomposition have not been provided

before. Wang et al. [2013b] propose a multi-block ADMM method for the matrix

decomposition problem but only provide convergence rate analysis in expectation

and it has poor high dimensional scaling (as O(p4) for a p × p matrix) without

further modifications. Note that they only provide convergence rate on difference

between loss function and optimal loss, whereas we provide the convergence rate on

individual errors of the sparse and low rank components ‖S̄(T )−S∗‖2
F, ‖L̄(T )−L∗‖2

F.

See Table 4.2 for comparison of guarantees for matrix decomposition problem.

We compare our guarantees in the online setting with the batch guarantees

of Agarwal et al. [2012a]. Although other batch analyses exist for matrix decompo-

sition, e.g., [Chandrasekaran et al., 2011, Candès et al., 2011, Hsu et al., 2011], they

require stronger assumptions based on incoherence conditions for recovery, which

we do not impose here. The batch analysis by Agarwal et al. [2012a] requires fairly

mild condition such as “diffusivity” of the unknown low rank matrix. Moreover,

the convergence rate for the batch setting by Agarwal et al. [2012a] achieves the

minimax lower bound (under the independent noise model), and is thus, optimal,

up to constant factors.
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Note that when only the weak diffusivity condition is assumed, the matrix

decomposition problem suffers from an approximation error, i.e. an error even

in the noiseless setting. Both the minimax rate and the batch rates in [Agarwal

et al., 2012a] have an approximation error. However, our approximation error is

worse by a factor of p, although it is still decaying with respect to p.

Overview of Proof Techniques: Note that in the main text, we provide

guarantees for fixed-epoch length. However, if we use variable-length epoch size we

can get a log d improvement in the convergence rate. Our proof involves the fol-

lowing high-level steps to establish the convergence rate: (1) deriving convergence

rate for the modified ADMM method (with variable-length epoch size) at the end

of one epoch, where the ADMM estimate is compared with the batch estimate,

(2) comparing the batch estimate with the true parameter, and then combining

the two steps, and analyzing over multiple epochs to obtain the final bound. We

can show that with the proposed parameter setting and varying epoch size, error

can be halved by the end of each epoch. For the matrix decomposition problem,

additional care is needed to ensure that the errors in estimating the sparse and low

rank parts can be decoupled. This is especially non-trivial in our setting since we

utilize multiple variables in different blocks which are updated in each iteration.

Our careful analysis enables us to establish the first results for online matrix de-

composition in the high-dimensional setting which match the batch guarantees for

many interesting statistical models. (3) Next, we analyze how guarantees change
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Method Assumptions convergence

ST-ADMM [Ouyang et al., 2013] L, convexity O(d2/
√
T )

ST-ADMM [Ouyang et al., 2013] SC, E O(d2 log T/T )

BADMM [Wang and Banerjee, 2013] convexity, E O(d2/
√
T )

RADAR [Agarwal et al., 2012b] LSC, LL O(s log d/T )
REASON 1 (this work) LSC, LL O(s log d/T )

Minimax bound [Raskutti et al., 2011] Eigenvalue conditions O(s log d/T )

Table 4.1: Comparison of online sparse optimization methods under s sparsity level
for the optimal paramter, d dimensional space, and T number of iterations.
SC = Strong Convexity, LSC = Local Strong Convexity, LL = Local Lipschitz, L
= Lipschitz property, E = in Expectation
The last row provides minimax-optimal rate on error for any method. The results
hold with high probability unless otherwise mentioned.

for fixed epoch length. We prove that although the error halving stops after some

iterations but the error does not increase noticeably to invalidate the analysis.

4.2 Problem Formulation

Consider the optimization problem

θ∗ ∈ arg min
θ∈Ω

E[f(θ, x)], (4.2.1)

where x ∈ X is a random variable and f : Ω × X → R is a given loss function.

Since only samples are available, we employ the empirical estimate of f̂(θ) :=
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Method Assumptions Convergence rate
Multi-block-ADMM
[Wang et al., 2013b]

L, SC, E O(p
4

T
)

Batch method
[Agarwal et al., 2012a]

LL, LSC, DF O( s log p+rp
T

) +O( s
p2

)

REASON 2 (this work) LSC, LL, DF O( (s+r)β2(p) log p
T

) +O(max{s+r,p}
p2

)

Minimax bound
[Agarwal et al., 2012a]

`2, IN, DF O( s log p+rp
T

) +O( s
p2

)

Table 4.2: Comparison of optimization methods for sparse+low rank matrix decom-
position for a p× p matrix under s sparsity level and r rank matrices and T is the
number of samples.
SC = Strong Convexity, LSC = Local Strong Convexity, LL = Local Lipschitz, L =
Lipschitz for loss function, IN = Independent noise model, DF = diffuse low rank
matrix under the optimal parameter. β(p) = Ω(

√
p),O(p) and its value depends the

model. The last row provides minimax-optimal rate on error for any method under
the independent noise model. The results hold with high probability unless otherwise
mentioned.
For Multi-block-ADMM [Wang et al., 2013b] the convergence rate is on the dif-
ference of loss function from optimal loss, for the rest of works in the table, the
convergence rate is on ‖S̄(T )− S∗‖2

F + ‖L̄(T )− L∗‖2
F.

1/n
∑

i∈[n] f(θ, xi) in the optimization. For high-dimensional θ, we need to impose

a regularization R(·), and

θ̂ := arg min{f̂(θ) + λnR(θ)}, (4.2.2)

is the batch optimal solution.

For concreteness we focus on the sparse optimization and the matrix decom-

position problem. It is straightforward to generalize our results to other settings,
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say [Negahban et al., 2012]. For the first case, the optimum θ∗ is a s-sparse solution,

and the regularizer is the `1 norm, and we have

θ̂ =arg min {f̂(θ) + λn‖θ‖1} (4.2.3)

We also consider the matrix decomposition problem, where the underlying ma-

trix M∗ = S∗ + L∗ is a combination of a sparse matrix S∗ and a low rank matrix

L∗. Here the unknown parameters are [S∗;L∗], and the regularization R(·) is a

combination of the `1 norm, and the nuclear norm ‖ · ‖∗ on the sparse and low rank

parts respectively. The corresponding batch estimate is given by

M̂ := arg min{f(M) + λn‖S‖1 + µn‖L‖∗} (4.2.4)

s.t. M = S + L, ‖L‖∞ ≤
α

p
.

The ‖ · ‖∞ constraint on the low rank matrix will be discussed in detail later, and

it is assumed that the true matrix L∗ satisfies this condition.

We consider an online version of the optimization problem where we optimize the

program in (4.2.2) under each data sample instead of using the empirical estimate

of f for an entire batch. We consider an inexact version of the online ADMM

method, where we compute the gradient ĝi ∈ ∇f(θ, xi) at each step and employ

it for optimization. In addition, we consider an epoch based setting, where we

constrain the optimal solution to be close to the initial estimate at the beginning of
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the epoch. This can be viewed as a form of regularization and we constrain more

(i.e. constrain the solution to be closer) as time goes by, since we expect to have

a sharper estimate of the optimal solution. This limits the search space for the

optimal solution and allows us to provide tight guarantees in the high-dimensional

regime.

We first consider the simple case of sparse setting in (4.2.3), where the ADMM

has double blocks,and then extend it to the sparse+low rank setting of (4.2.4),

which involves multi-block ADMM.

4.3 `1 Regularized Stochastic Optimization

We consider the optimization problem θ∗ ∈ arg min E[f(θ, x)], θ ∈ Ω where θ∗ is

a sparse vector. The loss function f(θ, xk) is a function of a parameter θ ∈ Rd

and samples xi. In stochastic setting, we do not have access to E[f(θ, x)] nor to

its subgradients. In each iteration we have access to one noisy sample. In order to

impose sparsity we use regularization. Thus we solve a sequence

θk ∈ arg min
θ∈Ω′

f(θ, xk) + λ‖θ‖1, Ω′ ⊂ Ω, (4.3.1)

where the regularization parameter λ > 0 and the constraint sets Ω′ change from

epoch to epoch.
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Algorithm 2 Regularized Epoch-based Admm for Stochastic Optimization in high-
dimensioN 1 (REASON 1)

Input ρ, ρx > 0, epoch length T0 , initial prox center θ̃1, initial radius R1,
regularization parameter {λi}kTi=1.
Define Shrinkκ(·) shrinkage operator in (4.3.3)
for Each epoch i = 1, 2, ..., kT do

Initialize θ0 = y0 = θ̃i
for Each iteration k = 0, 1, ..., T0 − 1 do

θk+1 = arg min
‖θ−θ̃i‖1≤Ri

{〈∇f(θk), θ − θk〉 − 〈zk, θ − yk〉+
ρ

2
‖θ − yk‖2

2 +
ρx
2
‖θ − θk‖2

2}

(4.3.2)

yk+1 = Shrinkλi/ρ(θk+1 −
zk
ρ

)

zk+1 = zk − τ(θk+1 − yk+1)

end for
Return : θ(Ti) := 1

T

∑T0−1
k=0 θk for epoch i and θ̃i+1 = θ(Ti).

Update : R2
i+1 = R2

i /2.
end for

4.3.1 Epoch-based Online ADMM Algorithm

We now describe the modified inexact ADMM algorithm for the sparse opti-

mization problem in (4.3.1), and refer to it as REASON 1, see Algorithm 2. We

consider epochs of length T0, and in each epoch i, we constrain the optimal solu-

tion to be within an `1 ball with radius Ri centered around θ̃i, which is the initial

estimate of θ∗ at the start of the epoch. The θ-update is given by

θk+1 = arg min
‖θ−θ̃i‖21≤R2

i

{〈∇f(θk), θ − θk〉 − 〈zk, θ − yk〉+
ρ

2
‖θ − yk‖2

2 +
ρx
2
‖θ − θk‖2

2}
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Note that this is an inexact update since we employ the gradient ∇f(·) rather than

optimize directly on the loss function f(·) which is expensive. The above program

can be solved efficiently since it is a projection on to the `1 ball, whose complexity

is linear in the sparsity level of the gradient, when performed serially, and O(log d)

when performed in parallel using d processors [Duchi et al., 2008]. For details of

θ-update implementation see Appendix 4.7.1.

For the regularizer, we introduce the variable y, and the y-update is

yk+1 = arg min{λi‖yk‖1 − 〈zk, θk+1 − y〉+
ρ

2
‖θk+1 − y‖2

2}

This update can be simplified to the form given in REASON 1, where Shrinkκ(·) is

the soft-thresholding or shrinkage function [Boyd et al., 2011].

Shrinkκ(a) = (a− κ)+ − (−a− κ)+ (4.3.3)

Thus, each step in the update is extremely simple to implement. When an epoch

is complete, we carry over the average θ(Ti) as the next epoch center and reset the

other variables.

4.3.2 High-dimensional Guarantees

We now provide convergence guarantees for the proposed method under the follow-

ing assumptions.

68



Assumption A1: Local strong convexity (LSC) : The function f : S →

R satisfies an R-local form of strong convexity (LSC) if there is a non-negative

constant γ = γ(R) such that

f(θ1) ≥ f(θ2) + 〈∇f(θ2), θ1 − θ2〉+
γ

2
‖θ2 − θ1‖2

2.

for any θ1, θ2 ∈ S with ‖θ1‖1 ≤ R and ‖θ2‖1 ≤ R.

Note that the notion of strong convexity leads to faster convergence rates in

general. Intuitively, strong convexity is a measure of curvature of the loss function,

which relates the reduction in the loss function to closeness in the variable domain.

Assuming that the function f is twice continuously differentiable, it is strongly

convex, if and only if its Hessian is positive semi-definite, for all feasible θ. However,

in the high-dimensional regime, where there are fewer samples than data dimension,

the Hessian matrix is often singular and we do not have global strong convexity. A

solution is to impose local strong convexity which allows us to provide guarantees for

high dimensional problems. The notion of local strong convexity has been exploited

before in a number of works on high dimensional analysis, e.g., [Negahban et al.,

2012, Agarwal et al., 2012a,b].
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Assumption A2: Sub-Gaussian stochastic gradients: Let ek(θ) := ∇f(θ, xk)−

E[∇f(θ, xk)]. For all θ such that ‖θ− θ∗‖1 ≤ R, there is a constant σ = σ(R) such

that for all k > 0,

E[exp(‖ek(θ)‖2
∞)/σ2] ≤ exp(1)

Remark: The bound holds with σ = O(
√

log d) whenever each component of

the error vector has sub-Gaussian tails [Agarwal et al., 2012b].

Assumption A3: Local Lipschitz condition: For each R > 0, there is a

constant G = G(R) such that

|f(θ1)− f(θ2)| ≤ G‖θ1 − θ2‖1 (4.3.4)

for all θ1, θ2 ∈ S such that ‖θ − θ∗‖1 ≤ R and ‖θ1 − θ∗‖1 ≤ R.

We choose the algorithm parameters as below where λi is the regularization for

`1 term, ρ and ρx are penalties in θ-update as in (4.3.2) and τ is the step size for

the dual update.

λ2
i =

γ

s
√
T0

√
R2
i log d+

G2R2
i

T0

+ σ2
iR

2
iw

2
i (4.3.5)

ρ ∝
√
T0 log d

Ri

, ρx > 0, τ = ρ.
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Theorem 1. Under Assumptions A1 − A3, λi as in (4.3.5) , we use fixed epoch

length T0 = T log d/kT where T is the total number of iterations. Assuming this

setting ensures T0 = O(log d), for any θ∗ with sparsity s, we have

‖θ̄T − θ∗‖2
2 = O

(
s

log d+ (w2 + log(kT/log d))σ2

T

log d

kT

)
,

with probability at least 1− 3 exp(w2/12), where θ̄T is the average for the last epoch

for a total of T iterations and

kT = log2

γ2R2
1T

s2(log d+ 12σ2w2)
.

For proof, see Appendix A.2.6.

Improvement of log d factor : The above theorem covers the practical case

where the epoch length T0 is fixed. We can improve the above results using varying

epoch lengths (which depend on the problem parameters) such that ‖θ̄T − θ∗‖2
2 =

O(s log d/T ). See Theorem 3 in Appendix A.1.

Optimal Guarantees: The above results indicate a convergence rate ofO(s log d/T )

which matches the minimax lower bounds for sparse estimation [Raskutti et al.,

2011]. This implies that our guarantees are unimprovable up to constant factors.

Comparison with Agarwal et al. [2012b]: The RADAR algorithm proposed

by Agarwal et al. [2012b] also achieves a rate of O(s log d/T ) which matches with
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ours. The difference is our method is capable of solving problems with multiple

variables and constraints, as discussed in the next section, while RADAR cannot

be generalized to do so.

Remark on Lipschitz property: In fact, our method requires a weaker condi-

tion than local Lipschitz property. We only require the following bounds on the dual

variable: ‖zk+1−zk‖1 and ‖zk‖∞. Both these are upper bounded by G+2(ρx+ρ)Ri.

In addition the `1 constraint does not influence the bound on the dual variable. For

details see Section A.2.1.

Remark on need for `1 constraint: We use `1 constraint in the θ-update step,

while the usual ADMM method does not have such a constraint. The `1 constraint

allows us to provide efficient high dimensional scaling (as O(log d)). Specifically,

this is because one of the terms in our convergence rate consists of 〈ek, θk−θ̂i〉, where

ek is the error in the gradient (see Appendix A.2.2). We can use the inequality

〈ek, θk − θ̂i〉 ≤ ‖ek‖∞‖θk − θ̂i‖1.

From Assumption A2, we have a bound on ‖ek‖∞ = O(log d), and by imposing

the `1 constraint, we also have a bound on the second term, and thus, we have an

efficient convergence rate. If instead `p penalty is imposed for some p, the error

scales as ‖e(θ)‖2
q, where `q is the dual norm of `p. For instance, if p = 2, we have

q = 2, and the error can be as high as O(d/T ) since ‖e(θ)‖2
2 ≤ dσ. Note that for the
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`1 norm, we have `∞ as the dual norm, and ‖e(θ)‖∞ ≤ σ = O(
√

log d) which leads

to optimal convergence rate in the above theorem. Moreover, this `1 constraint can

be efficiently implemented, as discussed in Section 4.3.1.

4.4 Extension to Doubly Regularized Stochastic

Optimization

We now consider the problem of matrix decomposition into a sparse matrix S ∈

Rp×p and a low rank matrix L ∈ Rp×p based on the loss function f on M =

S+L. The batch program is given in Equation (4.2.4) and we now design an online

program based on multi-block ADMM algorithm, where the updates for M,S, L

are carried out independently.

In the stochastic setting, we consider the optimization problemM∗ ∈ arg min E[f(M,X)],

where we want to decompose M into a sparse matrix S ∈ Rp×p and a low rank ma-

trix L ∈ Rp×p. f(M,Xk) is a function of parameter M and samples Xk. Xk can be a

matrix (e.g. independent noise model) or a vector (e.g. Gaussian graphical model).

In stochastic setting, we do not have access to E[f(M,X)] nor to its subgradients.

In each iteration we have access to one noisy sample and update our estimate based
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on that. We impose the desired properties with regularization. Thus, we solve a

sequence

Mk :=arg min{f̂(M,Xk) + λ‖S‖1 + µ‖L‖∗} (4.4.1)

s.t. M = S + L, ‖L‖∞ ≤
α

p
.

4.4.1 Epoch-based Multi-Block ADMM Algorithm

We now extend the ADMM method proposed in REASON 2 to multi-block ADMM.

The details are in Algorithm 3, and we refer to it as REASON 2. Recall that the

matrix decomposition setting assumes that the true matrix M∗ = S∗ + L∗ is a

combination of a sparse matrix S∗ and a low rank matrix L∗. In REASON 2, the

updates for matrices M,S, L are done independently at each step.

For the M -update, the same linearization approach as in REASON 1 is used

Mk+1 = arg min{Tr(∇f(Mk),M −Mk)− Tr(Zk,M − Sk − Lk)

+
ρ

2
‖M − Sk − Lk‖2

F +
ρx
2
‖M −Mk‖2

F}.

This is an unconstrained quadratic optimization with closed-form updates, as shown

in REASON 2. The update rules for S, L are result of doing an inexact proximal
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update by considering them as a single block, which can then be decoupled as

follows. For details, see Section 4.5.2.

arg min
‖S−S̃i‖21≤R2

i

λi‖S‖1 +
ρ

2τk
‖S − (Sk + τkGMk

)‖2
F, (4.4.2)

arg min
‖L−L̃i‖2∗≤R̃2

i
‖L‖∞≤α/p

λi‖L‖∗ +
ρ

2τk
‖L− (Lk + τkGMk

)‖2
F, (4.4.3)

where GMk
= Mk+1 − Sk − Lk − 1

ρ
Zk.

As before, we consider epochs of length T0 and project the estimates S and

L around the epoch initializations S̃i and L̃i. We do not need to constrain the

update of matrix M . We impose an `1-norm project for the sparse estimate S. For

the low rank estimate L, we impose a nuclear norm projection around the epoch

initialization L̃i. Intuitively, the nuclear norm projection , which is an `1 projection

on the singular values, encourages sparsity in the spectral domain leading to low

rank estimates. In addition, we impose an `∞ constraint of α/p on each entry of

L, which is different from the update of S. Note that the `∞ constraint is also

imposed for the batch version of the problem (4.2.4) in [Agarwal et al., 2012a], and

we assume that the true matrix L∗ satisfies this constraint. For more discussions,

see Section 4.4.2.

Note that each step of the method is easily implementable. The M -update

is in closed form. The S-update involves optimization with projection on to the
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given `1 ball which can be performed efficiently [Duchi et al., 2008], as discussed in

Section 4.3.1. For implementation details see Appendix 4.7.2.

For the L-update, we introduce an additional auxiliary variable Y and we have

Lk+1 = min
‖L−L̃i‖2∗≤R̃2

i

λi‖L‖∗ − Tr(Uk, L− Yk) +
ρ

2
‖L− Yk‖2

F,

Yk+1 = min
‖Y ‖∞≤α/p

ρ

2τk
‖L− (Lk + τkGMk

)‖2
F +

ρ

2
‖Lk+1 − Y‖2

F −Tr(Uk, Lk+1 − Y ),

Uk+1 = Uk − τ(Lk+1 − Yk+1).

The L-update can now be performed efficiently by computing a SVD, and then

running the projection step [Duchi et al., 2008]. Note that approximate SVD com-

putation techniques can be employed for efficiency here, e.g., [Lerman et al., 2012].

The Y -update is projection on to the infinity norm ball which can be found easily.

Let Y(j) stand for j-th entry of vector(Y ). The for any j-th entry of vector(Y ),

solution will be as follows

If |(Lk+1 +
τk

τk + 1
(GMk

− Uk/ρ))(j)| ≤
α

p
,

then Y(j) = (Lk+1 +
τk

τk + 1
(GMk

− Uk/ρ))(j).

Else Y(j) = sign

(
(Lk+1 +

τk
τk + 1

(GMk
− Uk/ρ))(j) −

α

p

)
α

p
.

As before, the epoch averages are computed and used as initializations for the next

epoch.
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4.4.2 High-dimensional Guarantees

We now provide guarantees that REASON 2 efficiently recovers both the sparse

and the low rank estimates in high dimensions efficiently. We need the following

assumptions, in addition to Assumptions A1 and A2 from the previous section.

Assumption A4: Spectral Bound on the Gradient Error Let Ek(M,Xk) :=

∇f(M,Xk)− E[∇f(M,Xk)], ‖Ek‖2 ≤ β(p)σ, where σ := ‖Ek‖∞.

Recall from Assumption A2 that σ = O(log p), under sub-Gaussianity. Here,

we require spectral bounds in addition to ‖ · ‖∞ bound in A2.

Assumption A5: Bound on spikiness of low-rank matrix ‖L∗‖∞ ≤ α
p
.

Intuitively, the `∞ constraint controls the “spikiness” of L∗. If α ≈ 1, then the

entries of L are O(1/p), i.e. they are “diffuse” or “non-spiky”, and no entry is

too large. When the low rank matrix L∗ has diffuse entries, it cannot be a sparse

matrix, and thus, can be separated from the sparse S∗ efficiently. In fact, the `∞

constraint is a weaker form of the incoherence-type assumptions needed to guarantee

identifiability [Chandrasekaran et al., 2011] for sparse+low rank decomposition.

Assumption A6: Local strong convexity (LSC) The function f : Rd1×d2 →

Rn1×n2 satisfies an R-local form of strong convexity (LSC) if there is a non-negative

constant γ = γ(R) such that f(B1) ≥ f(B2) + Tr(∇f(B2)(B1 − B2)) + γ
2
‖B2 −

B1‖F, for any ‖B1‖ ≤ R and ‖B2‖ ≤ R, which is essentially the matrix version of
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Assumption A1. Note that we only require LSC condition on S+L and not jointly

on S and L.

We choose algorithm parameters as below where λi, µi are the regularization for

`1 and nuclear norm respectively, ρ, ρx correspond to penalty terms in M -update

and τ is dual update step size.

λ2
i =

γ
√
R2
i + R̃2

i

(s+ r)
√
T0

√
log p+

G2

T0

+ β2(p)σ2
iw

2
i (4.4.4)

+
ρ2
x(R

2
i + R̃2

i )

T0

+
α2

p2
+
β2(p)σ2

T0

(
log p+ w2

i

)
,

µ2
i = cµλ

2
i , ρ ∝

√
T0 log p

R2
i + R̃2

i

, ρx > 0, τ = ρ.

Theorem 2. Under assumptions A2 − A6, parameter settings (4.4.4) , let T de-

note total number of iterations and T0 = T log p/kT . Assuming that above setting

guarantees T0 = O(log p),

‖S̄(T )− S∗‖2
F + ‖L̄(T )− L∗‖2

F = (4.4.5)

O
(

(s+ r)
log p+ β2(p)σ2 (w2 + log(kT/ log p))

T

log p

kT

)
+

(
1 +

s+ r

γ2p

)
α2

p
,

with probability at least 1− 6 exp(−w2/12),

kT ' − log

(
(s+ r)2

γ2R2
1T

[
log p+ β2(p)σ2w2

])
.

For proof, see Appendix A.4.6
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Improvement of log p factor : The above result can be improved by a log p

factor by considering varying epoch lengths (which depend on the problem parame-

ters). The resulting convergence rate is O((s+r)p log p/T +α2/p). See Theorem 11

in Appendix A.3.

Scaling of β(p): We have the following bounds Θ(
√
p) ≤ β(p)Θ(p). This implies

that the convergence rate is O((s + r)p log p/T + α2/p), when β(p) = Θ(
√
p) and

when β(p) = Θ(p), it is O((s + r)p2 log p/T + α2/p). The upper bound on β(p)

arises trivially by converting the max-norm ‖Ek‖∞ ≤ σ to the bound on the spectral

norm ‖Ek‖2. In many interesting scenarios, the lower bound on β(p) is achieved,

as outlined in Section 4.4.2.1.

Comparison with the batch result: Agarwal et al. [2012a] consider the batch

version of the same problem (4.2.4), and provide a convergence rate of O(s log p+

rp)/T + sα2/p2). This is also the minimax lower bound under the independent

noise model. With respect to the convergence rate, we match their results with

respect to the scaling of s and r, and also obtain a 1/T rate. We match the scaling

with respect to p (up to a log factor), when β(p) = Θ(
√
p) attains the lower bound,

and we discuss a few such instances below. Otherwise, we are worse by a factor of

p compared to the batch version. Intuitively, this is because we require different

bounds on error terms Ek in the online and the batch settings. For online analysis,

we need to bound
∑Ti

k=1 ‖Ek‖2/Ti over each epoch, while for the batch analysis, we
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need to bound ‖
∑Ti

k=1 Ek‖2/Ti, which is smaller. Intuitively, the difference for the

two settings can be explained as follows: for the batch setting, since we consider an

empirical estimate, we operate on the averaged error, while we are manipulating

each sample in the online setting and suffer from the error due to that sample. We

can employ efficient concentration bounds for the batch case [Tropp, 2012], while

for the online case, no such bounds exist in general. From these observations, we

conjecture that our bounds in Theorem 11 are unimproveable in the online setting.

Approximation Error: Note that the optimal decomposition M∗ = S∗+L∗ is

not identifiable in general without the incoherence-style conditions [Chandrasekaran

et al., 2011, Hsu et al., 2011]. In our work [Sedghi et al., 2014a,b], we provide

efficient guarantees without assuming such strong incoherence constraints. This

implies that there is an approximation error which is incurred even in the noiseless

setting due to model non-identifiability. Agarwal et al. [2012a] achieve an approx-

imation error of sα2/p2 for their batch algorithm. Our online algorithm has an

approximation error of max{s + r, p}α2/p2, which is worse, but is still decaying

with p. It is not clear if this bound can be improved by any other online algorithm.

4.4.2.1 Optimal Guarantees for Various Statistical Models

We now list some statistical models under which we achieve the batch-optimal rate

for sparse+low rank decomposition.
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1) Independent Noise Model: Assume we sample i.i.d. matrices Xk = S∗ +

L∗ + Nk, where the noise Nk has independent bounded sub-Gaussian entries with

maxi,j Var(Nk(i, j)) = σ2. We consider the square loss function, i.e. ‖Xk−S−L‖2
F.

In this case, Ek = Xk − S∗ − L∗ = Nk. From [Thm. 1.1][Vu, 2005], we have w.h.p

that ‖Nk‖ = O(σ
√
p). We match the batch bound of [Agarwal et al., 2012a] in this

setting. Moreover, Agarwal et al. [2012a] provide a minimax lower bound for this

model, and we match it as well. Thus, we achieve the optimal convergence rate for

online matrix decomposition under the independent noise model.

2) Linear Bayesian Network: Consider a p-dimensional vector y = Ah + n,

where h ∈ Rr with r ≤ p, and n ∈ Rp. The variable h is hidden, and y is the

observed variable. We assume that the vectors h and n are each zero-mean sub-

Gaussian vectors with i.i.d entries, and are independent of one another. Let σ2
h and

σ2
n be the variances for the entries of h and n respectively. Without loss of generality,

we assume that the columns of A are normalized, as we can always rescale A and

σh appropriately to obtain the same model. Let Σ∗y,y be the true covariance matrix

of y. From the independence assumptions, we have Σ∗y,y = S∗+L∗, where S∗ = σ2
nI

is a diagonal matrix and L∗ = σ2
hAA

> has rank at most r.
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In each step k, we obtain a sample yk from the Bayesian network. For the square

loss function f , we have the error Ek = yky
>
k −Σ∗y,y. Applying [Cor. 5.50][Vershynin,

2010], we have, with w.h.p.

‖nkn>k − σ2
nI‖2 = O(

√
pσ2

n), ‖hkh>k − σ2
hI‖2 = O(

√
pσ2

h). (4.4.6)

We thus have with probability 1−Te−cp, ‖Ek‖2 ≤ O
(√

p(‖A‖2σ2
h + σ2

n)
)
, ∀ k ≤ T.

When ‖A‖2 is bounded, we obtain the optimal bound in Theorem 11, which matches

the batch bound. If the entries of A are generically drawn (e.g., from a Gaussian

distribution), we have ‖A‖2 = O(1 +
√
r/p). Moreover, such generic matrices

A are also “diffuse”, and thus, the low rank matrix L∗ satisfies Assumption A5,

with α ∼ polylog(p). Intuitively, when A is generically drawn, there are diffuse

connections from hidden to observed variables, and we have efficient guarantees

under this setting.

Thus, our online method matches the batch guarantees for linear Bayesian net-

works when the entries of the observed vector y are conditionally independent given

the latent variable h. When this assumption is violated, the above framework is no

longer applicable since the true covariance matrix Σ∗y,y is not composed of a sparse

matrix. To handle such models, we consider matrix decomposition of the inverse

covariance or the precision matrix M∗ := Σ∗−1
y,y, which can be expressed as a com-

bination of sparse and low rank matrices, for the class of latent Gaussian graphical

models, described in Section 4.5.3. Note that the result cannot be applied directly
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in this case as loss function is not locally Lipschitz. Nevertheless, in Section 4.5.3

we show that we can take care of this problem.

4.5 Proof Ideas and Discussion

4.5.1 Proof Ideas for REASON 1

1. In general, it is not possible to establish error contraction for stochastic

ADMM at the end of each step. We establish error contracting at the end

of certain time epochs, and we impose different levels of regularizations over

different epochs. We perform an induction on the error, i.e. if the error at

the end of kth epoch is ‖θ̄(Ti)− θ∗‖2
2 ≤ cR2

i , we show that in the subsequent

epoch, it contracts as ‖θ̄(Ti+1) − θ∗‖2
2 ≤ cR2

i /2 under appropriate choice of

Ti, Ri and other design parameters. This is possible when we establish feasi-

bility of the optimal solution θ∗ in each epoch. Once this is established, it is

straightforward to obtain the result in Theorem 3.

2. To show error contraction, we break down the error ‖θ̄(Ti) − θ∗‖2 into two

parts, viz., ‖θ̄(Ti)− θ̂(Ti)‖2 and ‖θ̂(Ti)−θ∗‖2, where θ̂(Ti) is the optimal batch

estimate over the i-th epoch. The first term ‖θ̄(Ti) − θ̂(Ti)‖2 is obtained on

the lines of analysis of stochastic ADMM, e.g., [Wang and Banerjee, 2013].

Nevertheless, our analysis differs from that of [Wang and Banerjee, 2013], as

theirs is not a stochastic method. i.e., the sampling error is not considered.
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Moreover, we show that the parameter ρx can be chosen as a constant while

the earlier work [Wang and Banerjee, 2013] requires a stronger constraint

ρx =
√
Ti. For details, see Appendix A.2.1. In addition, the `1 constraint

that we impose enables us to provide tight bounds for the high dimensional

regime. The second term ‖θ̂(Ti) − θ∗‖2 is obtained by exploiting the local

strong convexity properties of the loss function, on lines of [Agarwal et al.,

2012b]. There are additional complications in our setting, since we have an

auxiliary variable y for update of the regularization term. We relate the two

variables through the dual variable, and use the fact that the dual variable

is bounded. Note that this is a direct result from local Lipschitz property

and it is proved in Lemma 8 in Appendix A.2.1. In fact, in order to prove

the guarantees, we need bounded duality which is a weaker assumption than

local Lipschitz property. We discuss this in Section 4.5.3.

3. For fixed epoch length, the error shrinkage stops after some epochs but the

error does not increase significantly afterwards. Following lines of [Agarwal

et al., 2012b], we prove that for this case the convergence rate is worse by a

factor of log d.

4.5.2 Proof Ideas for REASON 2

We now provide a short overview of proof techniques for establishing the guarantees

in Theorem 2. It builds on the proof techniques used for proving Theorem 1, but is
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significantly more involved since we now need to decouple the errors for sparse and

low rank matrix estimation, and our ADMM method consists of multiple blocks.

The main steps are as follows

1. It is convenient to define W = [S;L] to merge the variables L and S into

a single variable W , as in [Ma et al., 2012]. Let φ(W ) = ‖S‖1 + µi
λi
‖L‖∗,

and A = [I, I]. The ADMM update for S and L in REASON 2, can now be

rewritten as a single update for variable W . Consider the update

Wk+1 = arg min
W
{λiφ(W ) +

ρ

2
‖Mk+1 − AW −

1

ρ
Zk‖2

F}.

The above problem is not easy to solve as the S and L parts are coupled to-

gether. Instead, we solve it inexactly through one step of a proximal gradient

method as in [Ma et al., 2012] as

arg min
W
{λiφ(W ) +

ρ

2τk
‖W − [Wk + τkA

>(Mk+1 − AWk −
1

ρ
Zk)]‖2

F}. (4.5.1)

Since the two parts of W = [S;L] are separable in the quadratic part now,

Equation (4.5.1) reduces to two decoupled updates on S and L as given by

(4.4.2) and (4.4.3).

2. It is convenient to analyze the W update in Equation (4.5.1) to derive conver-

gence rates for the online update in one time epoch. Once this is obtained, we

also need error bounds for the batch procedure, and we employ the guarantees
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from Agarwal et al. [2012a]. As in the previous setting of sparse optimization,

we combine the two results to obtain an error bound for the online updates

by considering multiple time epochs.

It should be noted that we only require LSC condition on S+L and not jointly

on S and L. This results in an additional higher order term when analyzing

the epoch error and therefore does not play a role in the final convergence

bound. The LSC bound provides us with sum of sparse and low rank errors

for each epoch. i.e., ‖Ŝi − S̄(Ti) + L̂i − L̄(Ti)‖2
F. Next we need to decouple

these errors.

3. An added difficulty in the matrix decomposition problem is decoupling the

errors for the sparse and low rank estimates. To this end, we impose norm

constraints on the estimates of S and L, and carry them over from epoch

to epoch. On the other hand, at the end of each epoch M is reset. These

norm constraints allows us to control the error. Special care needs to be taken

in many steps of the proof to carefully transform the various norm bounds,

where a naive analysis would lead to worse scaling in the dimensionality p.

We instead carefully project the error matrices on to on and off support of S∗

for the `1 norm term, and similarly onto the range and its complement of L∗

for the nuclear norm term. This allows us to have a convergence rate with a

s+ r term, instead of p.
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4. For fixed epoch length, the error shrinkage stops after some epochs but the

error does not increase significantly afterwards. Following lines of [Agarwal

et al., 2012b], we prove that for this case the convergence rate is worse by a

factor of log p.

Thus, our careful analysis leads to tight guarantees for online matrix decom-

position. For Proof outline and detailed proof of Theorem 2 see Appendix A.3.1

and A.4 respectively.

4.5.3 Graphical Model Selection

Our framework cannot directly handle the case where loss function is the log like-

lihood objective. This is because for log likelihood function Lipschitz constant can

be large and this leads to loose bounds on error. Yet, as we discuss shortly, our

analysis needs conditions weaker than Local Lipschitz property. We consider both

settings, i.e., fully observed graphical models and latent Gaussian graphical models.

We apply sparse optimization to the former and tackle the latter with sparse + low

rank decomposition.
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4.5.3.1 Sparse optimization for learning Gaussian graphical models

Consider a p-dimensional Gaussian random vector [x1, ..., xp]
> with a sparse inverse

covariance or precision matrix Θ∗. Consider the `1-regularized maximum likelihood

estimator (batch estimate),

Θ̂ := arg min
Θ�0

{Tr(Σ̂Θ)− log det{Θ}+ λn‖Θ‖1}, (4.5.2)

where Σ̂ is the empirical covariance matrix for the batch. This is a well-studied

method for recovering the edge structure in a Gaussian graphical model, i.e. the

sparsity pattern of Θ∗ [Ravikumar et al., 2011]. We have that the loss function is

strongly convex for all Θ within a ball1.

However, the above loss function is not (locally) Lipschitz in general, since the

gradient2 ∇f(x,Θ) = xx> −Θ−1 is not bounded in general. Thus, the bounds de-

rived in Theorem 1 do not directly apply here. However, our conditions for recovery

are somewhat weaker than local Lipschitz property, and we provide guarantees for

this setting under some additional constraints.

Let Γ∗ = Θ∗−1 ⊗ Θ∗−1 denote the Hessian of log-determinant barrier at true

information matrix. Let Y(j,k) := XjXk − E[X − jXk] and note that Γ∗(j,k),(l,m) =

E[Y(j,k)Y(l,m)
] [Ravikumar et al., 2011]. A bound on |||Γ∗|||∞ limits the influence of the

1Let Q = {θ ∈ Rn : αIn � ΘβIn} then − log det Θ is strongly convex on Q with γ =
1
β2 [d’Aspremont et al., 2008].

2The gradient computation can be expensive since it involves computing the matrix inverse.
However, efficient techniques for computing an approximate inverse can be employed, on lines
of [Hsieh et al., 2011].
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edges on each other, and we need this bound for guaranteed convergence. Yet, this

bound contributes to a higher order term and does not show up in the convergence

rate.

Corollary 1. Under Assumptions A1, A2 when the initialization radius R1 satisfies

R1 ≤ 0.25
‖Σ∗‖F

, under the negative log-likelihood loss function, REASON 1 has the

following bound (for dual update step size τ =
√
T0)

‖θ̄T − θ∗‖2
2 ≤ c0

s

γ2T
· log d

kT

[
log d+ σ2

(
w2 + 24 log(kT/ log d)

)]

The proof does not follow directly from Theorem 1, since it does not utilize

Lipschitz property. However, the conditions for Theorem 1 to hold are weaker than

(local) Lipschitz property and we utilize it to provide the above result. For proof,

see Appendix A.2.7. Note that in case epoch length is not fixed and depends on

the problem parameters, the bound can be improved by a log d factor.

Comparing to Theorem 1, the local Lipschitz constantG4 is replaced by σ2|||Γ∗|||2.

We have G = O(d), and thus we can obtain better bounds in the above result, when

|||Γ∗||| is small and the initialization radius R1 satisfies the above condition. Intu-

itively, the initialization condition (constraint on R1) is dependent on the strength

of the correlations. For the weak-correlation case, we can initialize with large error

compared to the strongly correlated setting.
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Figure 4.1: Graphical representation of a latent variable model.

4.5.3.2 Sparse + low rank decomposition for learning latent Gaussian

graphical models

Consider the Bayesian network on p-dimensional observed variables as

y = Ah+B y + n, y, n ∈ Rp, h ∈ Rr, (4.5.3)

as in Figure 4.1 where h, y and n are drawn from a zero-mean multivariate Gaus-

sian distribution. The vectors h and n are independent of one another, and

n ∼ N (0, σ2
nI). Assume that A has full column rank. Without loss of generality, we

assume that A has normalized columns, and that h has independent entries [Pitman

and Ross, 2012]. For simplicity, let h ∼ N (0, σ2
hI) (more generally, its covariance

is a diagonal matrix). Note that the matrix B = 0 in the previous setting (the

previous setting allows for more general sub-Gaussian distributions, and here, we

limit ourselves to the Gaussian distribution). For the model in (4.5.3), the precision
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matrix M∗ with respect to the marginal distribution on the observed vector y is

given by

M∗ := Σ∗−1
y,y = M̃∗

y,y − M̃∗
y,h(M̃

∗
h,h)

−1M̃∗
h,y, (4.5.4)

where M̃∗ = Σ∗−1, and Σ∗ is the joint-covariance matrix of vectors y and h. It

is easy to see that the second term in (4.5.4) has rank at most r. The first term

in (4.5.4) is sparse under some natural constraints, viz., when the matrix B is

sparse, and there are a small number of colliders among the observed variables y.

A triplet of variables consisting of two parents and their child in a Bayesian network

is termed as a collider. The presence of colliders results in additional edges when

the Bayesian network on y and h is converted to an undirected graphical model,

whose edges are given by the sparsity pattern M̃∗
y,y, the first term in (4.5.4). Such

a process is known as moralization [Lauritzen, 1996], and it involves introducing

new edges between the parents in the directed graph (the graph of the Bayesian

networks), and removing the directions to obtain an undirected model. Therefore,

when the matrix B is sparse, and there are a small number of colliders among the

observed variables y, the resulting sub-matrix M̃∗
y,y is also sparse.

We thus have the precision matrix M∗ in (4.5.4) as M∗ = S∗ + L∗, where S∗

and L∗ are sparse and low rank components. We can find this decomposition via
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regularized maximum likelihood. The batch estimate is given by Chandrasekaran

et al. [2012]

{Ŝ, L̂} :=arg min{Tr(Σ̂nM)− log detM + λn‖S‖1 + µn‖L‖∗}, (4.5.5)

s.t. M = S + L.

This is a special case of (4.2.4) with the loss function f(M) = Tr(Σ̂nM)−log detM .

In this case, we have the error Ek = yky
>
k −M∗−1. Since y = (I − B)−1(Ah + n),

we have the following bound w.h.p.

‖Ek‖2 ≤ O
(√

p · (‖A‖2
2σ

2
h + σ2

n) log(pT )

σmin(I −B)2

)
, ∀ k ≤ T,

where σmin(·) denotes the minimum singular value. The above result is obtained

by alluding to (4.4.6).

When ‖A‖2 and σmin(I−B) are bounded, we thus achieve optimal scaling for our

proposed online method. As discussed for the previous case, when A is generically

drawn, ‖A‖2 is bounded. To bound σmin(I − B), a sufficient condition is walk-

summability on the sub-graph among the observed variables y. The class of walk-

summable models is efficient for inference [Malioutov et al., 2006] and structure

learning [Anandkumar et al., 2012], and they contain the class of attractive models.

Thus, it is perhaps not surprising that we obtain efficient guarantees for such models

for our online algorithm.
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We need to slightly change the algorithm REASON 2 for this scenario as follows:

for the M -update in REASON 2, we add a `1 norm constraint on M as ‖Mk− S̃i−

L̃i‖2
1 ≤ R̆2, and this can still be computed efficiently, since it involves projection on

to the `1 norm ball, see Appendix 4.7.1. We assume a good initialization M which

satisfies ‖M −M∗‖2
1 ≤ R̆2.

This ensures that Mk in subsequent steps is non-singular, and that the gradient

of the loss function f in (4.5.5), which involves M−1
k , can be computed. As observed

in section 4.5.3.1 on sparse graphical model selection, the method can be made

more efficient by computing approximate matrix inverses [Hsieh et al., 2013]. As

observed before, the loss function f satisfies the local strong convexity property,

and the guarantees in Theorem 2 are applicable.

There is another reason for using the `1 bound. Note that the loss function

is not generally Lipschitz in this case. However, our conditions for recovery are

somewhat weaker than local Lipschitz property, and we provide guarantees for this

setting under some additional constraints. Let Γ∗ = M∗ ⊗M∗. As explained in

Section 4.5.3.1, a bound on |||Γ∗|||∞ limits the influence on the edges on each other,

and we need this bound for guaranteed convergence. Yet, this bound contributes

to a higher order term and does not show up in the convergence rate.
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Corollary 2. Under Assumptions A1, A2, A4, A5, when the radius R̆ satisfies

R̆ ≤ 0.25
‖Σ∗‖F

, under the negative log-likelihood loss function, REASON 2 has the

following bound (for dual update step size τ =
√
T0)

‖S̄(T )− S∗‖2
F + ‖L̄(T )− L∗‖2

F ≤

c0(s+ r)

T
· log p

kT

[
log p+ β2(p)σ2

(
w2 + log(kT/ log d)

)]
+ max{s+ r, p}α

2

p
.

The proof does not follow directly from Theorem 2, since it does not utilize

Lipschitz property. However, the conditions for Theorem 2 to hold are weaker than

(local) Lipschitz property and we utilize it to provide the above result. For proof,

see Appendix A.4.7. Note that in case epoch length is not fixed and depends on

the problem parameters, the bound can be improved by a log p factor.

4.6 Experiments

4.6.1 REASON 1

For sparse optimization problem we compare REASON 1 with RADAR and ST-

ADMM under the least-squares regression setting. Samples (xt, yt) are generated

such that xt ∈ Unif[−B,B] and yt = 〈θ∗, x〉 + nt. θ
∗ is s-sparse with s = dlog de.

nt ∼ N (0, η2). With η2 = 0.5 in all cases. We consider d = 20, 2000, 20000 and s =

1, 3, 5 respectively. The experiments are performed on a 2.5 GHz Intel Core i5 laptop

with 8 GB RAM. See Table 4.3 for experiment results. It should be noted that
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Figure 4.2: Least square regression, Error= ‖θ−θ∗‖2
‖θ∗‖2 vs. iteration number, d1 = 20

and d2 = 20000.

RADAR is provided with information of θ∗ for epoch design and recentering. In

addition, both RADAR and REASON 1 have the same initial radius. Nevertheless,

REASON 1 reaches better accuracy within the same run time even for small time

frames. In addition, we compare relative error ‖θ − θ∗‖2/‖θ∗‖2 in REASON 1

and ST-ADMM in the first epoch. We observe that in higher dimension error

fluctuations for ADMM increases noticeably (see Figure 4.2). Therefore, projections

of REASON 1 play an important role in denoising and obtaining good accuracy.

Epoch Size For fixed- epoch size, if epoch size is designed such that the relative

error defined above has shrunk to a stable value, then we move to the next epoch
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Dimension Run Time (s) Method error at 0.02T error at 0.2T error at T

ST-ADMM 1.022 1.002 0.996
d=20000 T=50 RADAR 0.116 2.10e-03 6.26e-05

REASON 1 1.5e-03 2.20e-04 1.07e-08
ST-ADMM 0.794 0.380 0.348

d=2000 T=5 RADAR 0.103 4.80e-03 1.53e-04
REASON 1 0.001 2.26e-04 1.58e-08
ST-ADMM 0.212 0.092 0.033

d=20 T=0.2 RADAR 0.531 4.70e-03 4.91e-04
REASON 1 0.100 2.02e-04 1.09e-08

Table 4.3: Least square regression problem, epoch size Ti = 2000, Error= ‖θ−θ∗‖2
‖θ∗‖2 .

Run Time T = 50 sec T = 150 sec

Error ‖M∗−S−L‖F
‖M∗‖F

‖S−S∗‖F
‖S∗‖F

‖L∗−L‖F
‖L∗‖F

‖M∗−S−L‖F
‖M∗‖F

‖S−S∗‖F
‖S∗‖F

‖L∗−L‖F
‖L∗‖F

REASON 2
inexact ALM

2.20e-03
5.11e-05

0.004
0.12

0.01
0.27

5.55e-05
8.76e-09

1.50e-04
0.12

3.25e-04
0.27

Table 4.4: REASON 2 and inexact ALM, matrix decomposition problem. p = 2000,
η2 = 0.01

and the algorithm works as expected. If we choose a larger epoch than this value

we do not gain much in terms of accuracy at a specific iteration. On the other

hand if we use a small epoch size such that the relative error is still noticeable, this

delays the error reduction and causes some local irregularities.
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4.6.2 REASON 2

We compare REASON 2 with state-of-the-art inexact ALM method for matrix de-

composition problem3 In this problem M is the noisy sample the algorithm receives.

Since we have direct access to M , the M -update is eliminated.

Table 4.4 shows that with equal time, inexact ALM reaches smaller ‖M
∗−S−L‖F
‖M∗‖F

error while in fact this does not provide a good decomposition. On the other hand,

REASON 2 reaches useful individual errors in the same time frame. Experiments

with η2 ∈ [0.01, 1] reveal similar results. This emphasizes the importance of projec-

tions in REASON 2. Further investigation on REASON 2 shows that performing

one of the projections (either `1 or nuclear norm) suffices to reach this performance.

The same precision can be reached using only one of the projections. Addition of

the second projection improves the performance marginally. Performing nuclear

norm projections are much more expensive since they require SVD. Therefore, it

is more efficient to perform the `1 projection. Similar experiments on exact ALM

shows worse performance than inexact ALM and are thus omitted.

4.7 Implementation

Here we discuss the updates for REASON 1 and REASON 2. Note that for any

vector v, v(j) denotes the j-th entry.

3 ALM codes are downloaded from http://perception.csl.illinois.edu/matrix-rank/

home.html and REASON 2 code is available at https://github.com/haniesedghi/REASON2.
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4.7.1 Implementation details for REASON 1

Let us start with REASON 1. We have already provided closed form solution for

y and z. The update rule for θ can be written as

min
w
‖w − v‖2

2 s.t. ‖w‖1 ≤ R, (4.7.1)

w = θ − θ̃i,

R = Ri,

v =
1

ρ+ ρx
[yk − θ̃i −

f(θk)

ρ
+
zk
ρ

+
ρx
ρ

(θk − θ̃i)].

We note that if ‖v‖1 ≤ R, the answer is w = v. Else, the optimal solution is on

the boundary of the constraint set and we can replace the inequality constraint

with ‖w‖1 = R. Similar to [Duchi et al., 2008], we perform Algorithm 4 for solv-

ing (4.7.1). The complexity of this Algorithm is O(d log d), d = p2.

4.7.2 Implementation details for REASON 2

For REASON 2, the update rule for M , Z, Y and U are in closed form. Consider

the S-update. It can be written in form of (4.7.1) with

min
W

λi‖W + S̃i‖1 +
ρ

2τk
‖W − (Sk + τkGMk

− S̃i)‖2
F. s.t. ‖W‖1 ≤ R,
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W = S − S̃i, R = Ri.

Therefore, similar to [Duchi et al., 2008], we generate a sequence of {W (t)}tst=1 via

W (t+1) =Π1

[
W (t) − ηt∇(t)

(
λi‖W + S̃i‖1 +

ρ

2τk
‖W − (Sk + τkGMk

− S̃i)‖2
F

)]
,

where Π1 is projection on to `1 norm, similar to Algorithm 4. In other words, at

each iteration,

vector

(
W (t) − ηt

[
λi∇(t)‖W (t) + S̃i‖1 +

ρ

τk
(W (t) − (Sk + τkGMk

− S̃i))
])

is the input to Algorithm 4 (instead of vector v) and the output is vector(W (t+1)).

The term ∇(t)‖W (t) + S̃i‖1 stands for subgradient of the `1 norm ‖W (t) + S̃i‖1. The

S-update is summarized is Algorithm 5. A step size of ηt ∝ 1/
√
t guarantees a

convergence rate of O(
√

log p/T ) [Duchi et al., 2008].

The L-update is very similar in nature to the S-update. The only difference is

that the projection is on to nuclear norm instead of `1 norm. It can be done by

performing an SVD before the `1 norm projection.

The code for REASON 1 follows directly from the discussion in Section 4.7.1.

For REASON 2 on the other hand, we have added additional heuristic modifications

to improve the performance. REASON 2 code is available at https://github.com/

haniesedghi/REASON2. The first modification is that we do not update the dual
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variable Z per every iteration on S and L. Instead, we update the dual variable

once S and L seem to have converged to some value or after every m iterations on

S and L. The reason is that once we start the iteration, S and L can be far from

each other which results in a big dual variable and hence, a slower convergence.

The value of m can be set based on the problem. For the experiments discussed

here we have used m = 4.

Further investigation on REASON 2 shows that performing one of the projec-

tions (either `1 or nuclear norm) suffices to reach this performance. The same

precision can be reached using only one of the projections. Addition of the second

projection improves the performance only marginally. Performing nuclear norm

projections are much more expensive since they require SVD. Therefore, it is more

efficient to perform the `1 projection. In the code, we leave it as an option to run

both projections.

4.8 Conclusion

In our work [Sedghi et al., 2014a,b], we consider a modified version of the stochas-

tic ADMM method for high-dimensional problems. We first analyze the simple

setting, where the optimization problem consists of a loss function and a single reg-

ularizer, and then extend to the multi-block setting with multiple regularizers and

multiple variables. For the sparse optimization problem, we showed that we reach
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the minimax-optimal rate in this case, which implies that our guarantee is unim-

proveable by any (batch or online) algorithm (up to constant factors). We then

consider the matrix decomposition problem into sparse and low rank components,

and propose a modified version of the multi-block ADMM algorithm. Experiments

show that for both sparse optimization and matrix decomposition problems, our

algorithm outperforms the state-of-the-art methods. In particular, we reach higher

accuracy with same time complexity. There are various future problems to consider.

One is to provide lower bounds on error for matrix decomposition problem in case

of strongly convex loss if possible. Agarwal et al. [2012a] do not provide bounds

for strongly convex functions. Another approach can be to extend our method to

address nonconvex programs. Loh and Wainwright [2013] and Wang et al. [2013c]

show that if the problem is nonconvex but has additional properties, it can be

solved by methods similar to convex loss programs. In addition, we can extend our

method to coordinate descent methods such as [Roux et al., 2012].
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Algorithm 3 Regularized Epoch-based Admm for Stochastic Optimization in high-
dimensioN 2 (REASON 2)

Input ρ, ρx > 0, epoch length T0 , regularizers {λi, µi}kTi=1, initial prox center
S̃1, L̃1, initial radii R1, R̃1.
Define Shrinkκ(a) shrinkage operator in (4.3.3), GMk

= Mk+1−Sk −Lk − 1
ρ
Zk.

for Each epoch i = 1, 2, ..., kT do
Initialize S0 = S̃i, L0 = L̃i,M0 = S0 + L0

for Each iteration k = 0, 1, ..., T0 − 1 do

Mk+1 =
−∇f(Mk) + Zk + ρ(Sk + Lk) + ρxMk

ρ+ ρx

Sk+1 = min
‖S−S̃i‖1≤Ri

λi‖S‖1 +
ρ

2τk
‖S − (Sk + τkGMk

)‖2
F

Lk+1 = min
‖L−L̃i‖∗≤R̃i

µi‖L‖∗ +
ρ

2
‖L− Yk − Uk/ρ‖2

F

Yk+1 = min
‖Y ‖∞≤α/p

ρ

2τk
‖Y − (Lk + τkGMk

)‖2
F +

ρ

2
‖Lk+1 − Y − Uk/ρ‖2

F

Zk+1 = Zk − τ(Mk+1 − (Sk+1 + Lk+1))

Uk+1 = Uk − τ(Lk+1 − Yk+1).

end for
Set: S̃i+1 = 1

T0

∑T0−1
k=0 Sk and L̃i+1 := 1

T0

∑T0−1
k=0 Lk

if R2
i > 2(s+ r + (s+r)2

pγ2
)α

2

p
then

Update R2
i+1 = R2

i /2, R̃
2
i+1 = R̃i

2
/2

else
STOP

end if
end for
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Algorithm 4 Implementation of θ-update

Input: A vector v = 1
ρ+ρx

[yk−θ̃i−∇f(θk)
ρ

+ zk
ρ

+ ρx
ρ

(θk−θ̃i)] and a scalar R = Ri > 0

if ‖v‖1 ≤ R, then
Output: θ = v + θ̃i

else
Sort v into µ: µ1 ≥ µ2 ≥ · · · ≥ µd.
Find κ = max{j ∈ [d] : µj − 1

j

(∑j
i=1 µi −R

)
> 0}.

Define ζ = 1
κ

(∑κ
i=1 µi −R

)
Output: θ, where θ(j) = sign(v(j)) max{v(j) − ζ, 0}+ (θ̃i)(j)

end if

Algorithm 5 Implementation of S-update

Input: W (1) = vector(Sk − S̃i) and a scalar R = Ri > 0
for t = 1 to t = ts do

v = W (t)−ηt
[
λi∇(t)‖W (t) + vector(S̃i)‖1 + ρ

τk

(
W (t) − vector(Sk + τkGMk

− S̃i)
)]

if ‖v‖1 ≤ R, then
W (t+1) = v

else
Sort v into µ: µ1 ≥ µ2 ≥ · · · ≥ µd.
Find κ = max{j ∈ [d] : µj − 1

j

(∑j
i=1 µi −R

)
> 0}.

Define ζ = 1
κ

(∑κ
i=1 µi −R

)
For 1 ≤ j ≤ d, W

(t+1)
(j) = sign(v(j)) max{v(j) − ζ, 0}

end if
end for
Output:matrix(W (ts)) + S̃i
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Appendix A

Appendix: Proofs

A.1 Guarantees for REASON 1

First, we provide guarantees for the theoretical case such that epoch length depends

on epoch radius. This provides intuition on how the algorithm is designed. The

fixed-epoch algorithm is a special case of this general framework. We first state and

prove guarantees for general framework. Next, we leverage these results to prove

Theorem 1.

Let the design parameters be set as

Ti = C
s2

γ2

[
log d+ 12σ2

i log(3/δi)

R2
i

]
, (A.1.1)

λ2
i =

γ

s
√
Ti

√
R2
i log d+

G2R2
i + ρ2

xR
4
i

Ti
+ σ2

iR
2
i log(3/δi),

ρ ∝
√

log d

Ri

√
Ti
, ρx > 0, τ = ρ.
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Theorem 3. Under assumptions A1 − A3 and parameter settings (A.1.1), there

exists a constant c0 > 0 such that REASON 1 satisfies for all T > kT ,

‖θ̄T − θ∗‖2
2 ≤ c0

s

γ2T

[
e log d+ σ2w2 + log kT )

]
, (A.1.2)

with probability at least 1 − 6 exp(−w2/12), where kT = log2
γ2R2

1T

s2(log d+12σ2 log( 6
δ

))
, and

c0 is a universal constant.

For Proof outline and detailed proof of Theorem 3 see Appendix A.1.1 and A.2

respectively.

A.1.1 Proof outline for Theorem 3

The foundation block for this proof is Proposition 2.

Proposition 2. Suppose f satisfies Assumptions A1, A2 with parameters γ and σi

respectively and assume that ‖θ∗− θ̃i‖2
1 ≤ R2

i . We apply the updates in REASON 1

with parameters as in (A.1.1). Then, there exists a universal constant c such that

for any radius Ri

f(θ̄(Ti))− f(θ̂i) + λi‖ȳ(Ti)‖1 − λi‖θ̂i‖1 ≤
Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
(A.1.3a)

+
Riσi√
Ti

√
12 log(3/δi),

‖θ̄(Ti)− θ∗‖2
1 ≤

c′√
C
R2
i . (A.1.3b)
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where ρ0 = ρx + ρ and both bounds are valid with probability at least 1− δi.

Note that our proof for epoch optimum improves proof of [Wang and Banerjee,

2013] with respect to ρx. For details, see Section A.2.1.

In order to prove Proposition 2, we need to prove some more lemmas.

To move forward from here please note the following notations: ∆i = θ̂i − θ∗

and ∆̂(Ti) = θ̄i − θ̂i.

Lemma 4. At epoch i assume that ‖θ∗− θ̃i‖1 ≤ Ri. Then the error ∆i satisfies the

bounds

‖θ̂i − θ∗‖2 ≤
4

γ

√
sλi, (A.1.4a)

‖θ̂i − θ∗‖1 ≤
8

γ
sλi. (A.1.4b)

Lemma 5. Under the conditions of Proposition 2 and with parameter settings

(A.1.1) , we have

‖∆̂(Ti)‖2
2 ≤

c′√
C

1

s
R2
i ,

with probability at least 1− δi.
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A.2 Proof of Theorem 3

The first step is to ensure that ‖θ∗ − θ̃i‖ ≤ Ri holds at each epoch so that Propo-

sition 2 can be applied in a recursive manner. We prove this by induction on the

epoch index. By construction, this bound holds at the first epoch. Assume that

it holds for epoch i. Recall that Ti is defined by (A.1.1) where C ≥ 1 is a con-

stant we can choose. By substituting this Ti in inequality (A.1.3b), the simplified

bound (A.1.3b) further yields

‖θ̄(Ti)− θ∗‖2
1 ≤

c′√
C
R2
i .

Thus, by choosing C sufficiently large, we can ensure that ‖θ̄(Ti)− θ∗‖2
1 ≤ R2

i /2 :=

R2
i+1. Consequently, if θ∗ is feasible at epoch i, it stays feasible at epoch i + 1.

Hence, by induction we are guaranteed the feasibility of θ∗ throughout the run of

algorithm.

As a result, Lemma 5 applies and we find that

‖∆̂(Ti)‖2
2 ≤

c

s
R2
i . (A.2.1)
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We have now bounded ∆̂(Ti) = θ̄(Ti) − θ̂i and Lemma 4 provides a bound on

∆i = θ̂i − θ∗, such that the error ∆∗(Ti) = θ̄(Ti)− θ∗ can be controlled by triangle

inequality. In particular, by combining (A.1.4a) with (A.2.1), we get

‖∆∗(Ti)‖2
2 ≤ c{1

s
R2
i +

16

s
R2
i },

i.e.

‖∆∗(Ti)‖2
2 ≤ c

R2
12−(i−1)

s
. (A.2.2)

The bound holds with probability at least 1 − 3 exp(−w2
i /12). Recall that R2

i =

R2
12−(i−1). Since w2

i = w2 + 24 log i, we can apply union bound to simplify the

error probability as 1 − 6 exp(−w2/12). Throughout this report we use δi =

3 exp(−w2
i /12) and δ = 6 exp(−w2/12) to simplify the equations.

To complete the proof we need to convert the error bound (A.2.2) from its

dependence on the number of epochs kT to the number of iterations needed to

complete kT epochs, i.e. T (K) =
∑k

i=1 Ti. Note that here we use Ti from (A.2.8),
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to show that when considering the dominant terms, the definition in (A.1.1) suffices.

Here you can see how negligible terms are ignored.

T (k) =
k∑
i=1

C

[
s2

γ2

[
log d+ 12σ2

i log(3/δi)

R2
i

]
+
s

γ

G

Ri

+
s

γ
ρx

]

= C

k∑
i=1

[
s2{log d+ γ/sG+ σ2(w2 + 24 log k)}2i−1

γ2R2
1

+
sG

γR1

√
2
i−1

+
s

γ
ρx

]
.

Hence,

T (k) ≤ C

[
s2

γ2R2
1

{log d+ σ2(w2 + 24 log k)}2k +
s

γR1

G
√

2
k

+
s

γ
ρx

]
.

T (k) ≤ S(k), therefore kT ≥ S−1(T ).

S(k) = C

[
s2

γ2R2
1

{log d+ σ2(w2 + 24 log k)}2k +
s

γR1

G
√

2
k

+
s

γ
ρx

]
.

Ignoring the dominated terms and using a first order approximation for log(a+ b),

log(T ) ' logC + kT + log

[
s2

γ2R2
1

{log d+ σ2(w2 + 24 log k)}
]
,

kT ' log T − logC − log

[
s2

γ2R2
1

{log d+ σ2(w2 + 24 log k)}
]
.

Therefore,

2−kT =
Cs2

γ2TR2
1

{log d+ σ2(w2 + 24 log k)}.
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Putting this back into (A.2.2), we get that

‖∆∗(Ti)‖2
2 ≤ c

R2
1

s

Cs2

γ2TR2
1

{log d+ σ2(w2 + 24 log k)}

≤ c
s

γ2T
{log d+ σ2(w2 + 24 log k)}.

Using the definition δ = 6 exp(−w2/12), above bound holds with probability 1− δ.

Simplifying the error in terms of δ by replacing w2 with 12 log(6/δ), gives us (A.1.2).

A.2.1 Proofs for Convergence within a Single Epoch for

Algorithm 2

Lemma 6. For θ̄(Ti) defined in Algorithm 2 and θ̂i the optimal value for epoch i,

let ρ = c1

√
Ti, ρx some positive constant, ρ0 = ρ+ ρx and τ = ρ where c1 =

√
log d
Ri

.

We have that

f(θ̄(Ti))− f(θ̂i) + λi‖ȳ(Ti)‖1 − λi‖θ̂i‖1 ≤ (A.2.3)

Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
+

∑Ti
k=1〈ek, θ̂i − θk〉

Ti
.

Remark : Please note that as opposed to [Wang and Banerjee, 2013] we do not

require ρx ∝
√
Ti. We show that our parameter setting also works.

Proof. First we show that our update rule for θ is equivalent to not linearizing f and

using another Bregman divergence. This helps us in finding a better upper bound
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on error that does not require bounding the subgradient. Note that linearization

does not change the nature of analysis. The reason is that we can define Bf (θ, θk) =

f(θ)−f(θk)+〈∇f(θk), θ−θk〉, which means f(θ)−Bf (θ, θk) = f(θk)+〈∇f(θk), θ−

θk〉.

Therefore,

arg min
‖θ−θ̃i‖21≤R2

i

{〈∇f(θk), θ − θk〉} = arg min
‖θ−θ̃i‖21≤R2

i

{f(θ)−Bf (θ, θk)}.

As a result, we can write down the update rule of θ in REASON 1 as

θk+1 = arg min
‖θ−θ̃i‖21≤R2

i

{f(θ)−Bf (θ, θk) + zTk (θ − yk) + ρBφ(θ, yk)

+ ρxBφ′x(θ, θk)}.

We also have that Bφx(θ, θk) = Bφ′x(θ, θk)−
1
ρx
Bf (θ, θk), which simplifies the update

rule to

θk+1 = arg min
‖θ−θ̃i‖21≤R2

i

{f(θ) + 〈zk, θ − yk〉+ ρBφ(θ, yk) + ρxBφx(θ, θk)}. (A.2.4)

We notice that equation (A.2.4) is equivalent to Equation (7) [Wang and Banerjee,

2013]. Note that as opposed to [Wang and Banerjee, 2013], in our setting ρx can

be set as a constant. Therefore, for completeness we provide proof of convergence

and the convergence rate for our setting.
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Lemma 7. Convergence of REASON 1: The optimization problem defined in REA-

SON 1 converges.

Proof. On lines of [Wang and Banerjee, 2013], let R(k + 1) stand for residuals of

optimality condition. For convergence we need to show that lim
k→∞

R(k+ 1) = 0. Let

wk = (θk, yk, zk). Define

D(w∗, wk) =
1

τρ
‖z∗ − zk‖2

2 +Bφ(y∗, yk) +
ρx
ρ
Bφ(θ∗, θk).

By Lemma 2 Wang and Banerjee [2013]

R(t+ 1) ≤ D(w∗, wk)−D(w∗, wk+1).

Therefore,

∞∑
k=1

R(t+ 1) ≤ D(w∗, w0)

=
1

τρ
‖z∗‖2

2 +Bφ(y∗, y0) +
ρx
ρ
Bφ(θ∗, θ0)

≤ lim
T→∞

R2
i

log d T
‖∇f(θ∗)‖2

2 + 2R2
i +

ρx√
T log d

R3
i .

Therefore, lim
k→∞

R(k + 1) = 0 and the algorithm converges. �
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If in addition we incorporate sampling error, then Lemma 1 [Wang and Banerjee,

2013] changes to

f(θk+1)− f(θ̂i) + λi‖yk+1‖1 − λi‖θ̂i‖1 ≤

− 〈zk, θk+1 − yk+1〉 −
ρ

2
{‖θk+1 − yk‖2

2 + ‖θk+1 − yk+1‖2
2}+ 〈ek, θ̂i − θk〉

+
ρ

2
{‖θ̂i − yk‖2

2 − ‖θ̂i − yk+1‖2
2}+ ρx{Bφx(θ̂i, θk)−Bφx(θ̂i, θk+1)

−Bφx(θk+1, θk)}.

The above result follows from convexity of f , the update rule for θ (Equation (A.2.4))

and the three point property of Bregman divergence.

Next, we show the bound on the dual variable.

Lemma 8. The dual variable in REASON 1 is bounded. i.e.,

‖zk‖1 ≤ G+ 2ρ0Ri, where ρ0 := ρx + ρ.

Proof. Considering the update rule for θ, we have the Lagrangian

L = f(θ) + 〈zk, θ − yk〉+ ρBφ(θ, yk) + ρxBφx(θ, θk) + ζ
(
‖θk+1 − θ̃i‖1 −Ri

)
,

where ζ is the Lagrange multiplier corresponding to the `1 bound. We hereby

emphasize that ζ does not play a role in size of the dual variable. i.e., considering

the `1 constraint, three cases are possible:
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1. ‖θk+1 − θ̃i‖1 > Ri. By complementary slackness, ζ = 0.

2. ‖θk+1 − θ̃i‖1 < Ri. By complementary slackness, ζ = 0.

3. ‖θk+1 − θ̃i‖1 = Ri. This case is equivalent to the non-constrained update

and no projection will take place. Therefore, z will be the same as in the

non-constrained update.

Having above analysis in mind, the upper bound on the dual variable can be found

as follows By optimality condition on θk+1, we have

−zk = ∇f(θk+1) + ρx(θk+1 − θk) + ρ(θk+1 − yk). (A.2.5)

By definition of the dual variable and the fact that τ = ρ, we have that

zk = zk−1 − ρ(θk − yk)

Hence, we have that −zk−1 = ∇f(θk+1) + (ρx + ρ)(θk+1 − θk). Therefore,

‖zk−1‖1 ≤ G+ 2ρ0Ri, where ρ0 := ρx + ρ.

It is easy to see that this is true for all zk at each epoch. �
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Consequently,

−1

τ
〈zk, zk − zk+1〉 =

1

τ
〈0− zk, zk − zk+1〉

=
1

2τ

(
‖zk+1‖2 − ‖zk‖2 − ‖zk+1 − zk‖2

)
.

Ignoring the negative term in the upper bound and noting z0 = 0, we get

1

Ti

Ti∑
k=1

−〈zk, θk+1 − yk+1〉 ≤
1

2τTi
‖zTi‖2 ≤ 1

2τTi
(G+ 2ρ0Ri)

2

' Ri

√
log d√
Ti

+
GRi

Ti
.

Note that since we consider the dominating terms in the final bound, terms with

higher powers of Ti can be ignored throughout the proof. Next, following the same

approach as in Theorem 4 [Wang and Banerjee, 2013] and considering the sampling

error, we get,

f(θ̄(Ti))− f(θ̂i) + λi‖ȳ(Ti)‖1 − λi‖θ̂i‖1

≤ Ri

√
log d√
Ti

+
GRi

Ti
+

c1√
Ti
‖θ̂i − y0‖2

2 +
ρx
Ti
Bφx(θ̂i, θ0) +

1

Ti

Ti∑
k=1

〈ek, θ̂i − θk〉.
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We have θ0 = y0 = θ̃i and z0 = 0. Moreover, Bφx(θ, θk) = Bφ′x(θ, θk)−
1
ρx
Bf (θ, θk).

Therefore,

f(θ̄(Ti))− f(θ̂i) + λi‖ȳ(Ti)‖1 − λi‖θ̂i‖1

≤ Ri

√
log d√
Ti

+
GRi

Ti
+

c1√
Ti
‖θ̂i − θ̃i‖2

2+
ρx
Ti
{Bφ′x(θ̂i, θ̃i)−Bf (θ̂i, θ̃i)}+

Ti∑
k=1

〈ek, θ̂i − θk〉

≤ Ri

√
log d√
Ti

+
GRi

Ti
+

√
log d

Ri

√
Ti
‖θ̂i − θ̃i‖2

2 +
ρx
Ti
Bφ′x(θ̂i, θ̃i) +

Ti∑
k=1

〈ek, θ̂i − θk〉.

We note that ρxBφ′x(θ̂i, θ̃i) = ρx
2
‖θ̂i − θ̃i‖2

2.

Considering the `2 terms, remember that for any vector x, if s > r > 0 then

‖x‖s ≤ ‖x‖r. Therefore,

√
log d

Ri

‖θ̂i − θ̃i‖2
2 ≤
√

log d

Ri

‖θ̂i − θ̃i‖2
1 ≤
√

log d

Ri

R2
i = Ri

√
log d.

�

A.2.2 Proof of Proposition 2: Inequality (A.1.3a)

Note the shorthand ek = ĝk − ∇f(θk), where ĝk stands for empirically calculated

subgradient of f(θk).
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From Lemma 6, we have that

f(θ̄(Ti))− f(θ̂i) + λi‖ȳ(Ti)‖1 − λi‖θ̂i‖1

≤ Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
+

∑Ti
k=1〈ek, θ̂i − θk〉

Ti
.

Using Lemma 7 from [Agarwal et al., 2012b], we have that

f(θ̄(Ti))− f(θ̂i) + λi‖ȳ(Ti)‖1 − λi‖θ̂i‖1

≤ Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
+
Riσiwi√

Ti

=
Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
+
Riσi√
Ti

√
12 log(3/δi).

with probability at least 1− δi. In the last equality we use δi = 3 exp(−w2
i /12).

A.2.3 Proof of Lemma 4

Proof follows the same approach as Lemma 1 [Agarwal et al., 2012b]. Note that

since we assume exact sparsity the term ‖θ∗Sc‖1 is zero for our case and is thus

eliminated. Needless to say, it is an straightforward generalization to consider

approximate sparsity from this point.
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A.2.4 Proof of Lemma 5

Using LSC assumption and the fact that θ̂i minimizes f(·) + ‖ · ‖1, we have that

γ

2
‖∆̂(Ti)‖2

2 ≤ f(θ̄(Ti))− f(θ̂(Ti)) + λi(‖ȳ(Ti)‖1 − ‖θ̂i‖1)

≤ Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
+
Riσi√
Ti

√
12 log

3

δi
,

with probability at least 1− δi.

A.2.5 Proof of Proposition 2: Inequality (A.1.3b)

Throughout the proof, let ∆∗(Ti) = θ̄i − θ∗ and ∆̂(Ti) = θ̄i − θ̂i, we have that

∆∗(Ti)−∆̂(Ti) = θ̂i−θ∗. Now we want to convert the error bound in (A.1.3a) from

function values into `1 and `2-norm bounds by exploiting the sparsity of θ∗. Since

the error bound in (A.1.3a) holds for the minimizer θ̂i, it also holds for any other

feasible vector. In particluar, applying it to θ∗ leads to,

f(θ̄(Ti))− f(θ∗) + λi‖ȳ(Ti)‖1 − λi‖θ∗‖1

≤ Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
+
Riσi√
Ti

√
12 log

3

δi
,

with probability at least 1− δi.
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For the next step, we find a lower bound on the left hand side of this inequality.

f(θ̄(Ti))− f(θ∗) + λi‖ȳ(Ti)‖1 − λi‖θ∗‖1 ≥

f(θ∗)− f(θ∗) + λi‖ȳ(Ti)‖1 − λi‖θ∗‖1 =

λi‖ȳ(Ti)‖1 − λi‖θ∗‖1,

where the first inequality results from the fact that θ∗ optimizes f(θ). Thus,

‖ȳ(Ti)‖1 ≤ ‖θ∗‖1 +
Ri

√
log d

λi
√
Ti

+
GRi

λiTi
+
ρxR

2
i

λiTi
+

Riσi

λi
√
Ti

√
12 log

3

δi
.

Now we need a bound on ‖θ̄(Ti)− ȳ(Ti)‖1, we have

‖θ̄(Ti)− ȳ(Ti)‖1 = ‖ 1

Ti

Ti−1∑
k=0

(θk − yk)‖1

= ‖ 1

τTi

Ti−1∑
k=0

(zk+1 − zk)‖1

=
1

τTi
‖zTi‖1

≤ G+ 2ρ0Ri

Tiτ
=

GRi

Ti
√
Ti
√

log d
+
Ri

Ti
.

By triangle inequality

‖θ̄(Ti)‖1 − ‖ȳ(Ti)‖1 ≤ ‖θ̄(Ti)− ȳ(Ti)‖1,
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Hence, after ignoring the dominated terms,

‖θ̄(Ti)‖1 ≤‖θ∗‖1 +
Ri

√
log d

λi
√
Ti

+
GRi

λiTi
+
ρxR

2
i

λiTi
+

Riσi

λi
√
Ti

√
12 log(3/δi) +

Ri

Ti
.

By Lemma 6 in [Agarwal et al., 2012b],

‖∆∗(Ti)Sc‖1 ≤‖∆∗(Ti)S‖1 +
Ri

√
log d

λi
√
Ti

+
GRi

λiTi
+
ρxR

2
i

λiTi
+

Riσi

λi
√
Ti

√
12 log(3/δi) +

Ri

Ti
.

with probability at least 1− 3 exp(−w2
i /12).

We have ∆∗(Ti)− ∆̂(Ti) = θ̂i − θ∗. Therefore,

‖θ̂i − θ∗‖1 =

‖∆∗S(Ti)− ∆̂S(Ti)‖1 + ‖∆∗Sc(Ti)− ∆̂Sc(Ti)‖1 ≥

{‖∆∗S(Ti)‖1 − ‖∆̂S(Ti)‖1} − {‖∆∗Sc(Ti)‖1 − ‖∆̂Sc(Ti)‖1}.

Consequently,

‖∆̂Sc(Ti)‖1 − ‖∆̂S(Ti)‖1 ≤ ‖∆∗Sc(Ti)‖1 − ‖∆∗S(Ti)‖1 + ‖θ̂i − θ∗‖1.

Using Equation (A.1.4b), we get

‖∆̂Sc(Ti)‖1 ≤‖∆̂S(Ti)‖1 +
8sλi
γ

+
Ri

√
log d

λi
√
Ti

+
GRi

λiTi
+
ρxR

2
i

λiTi
+

Riσi

λi
√
Ti

√
12 log(3/δi) +

Ri

Ti
.
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Hence, further use of the inequality ‖∆̂S(Ti)‖1 ≤
√
s‖∆̂(Ti)‖2 allows us to conclude

that there exists a universal constant c such that

‖∆̂(Ti)‖2
1 ≤ 4s‖∆̂(Ti)‖2

2+c

[
s2λ2

i

γ2
+
R2
i log d

λ2
iTi

+
G2R2

i

λ2
iT

2
i

+
ρ2
xR

4
i

λ2
iT

2
i

+
12R2

iσ
2
i log( 3

δi
)

Tiλ2
i

+
R2
i

T 2
i

]
,

(A.2.6)

with probability at least 1− δi.

Optimizing the above bound with choice of λi gives us (A.1.1). From here on

all equations hold with probability at least 1− δi, we have

‖∆̂(Ti)‖2
1 ≤

8s

γ

[
f(θ̄(Ti))− f(θ̂(Ti)) + λi(‖Ȳ (Ti)‖1 − ‖θ̂i‖1)

]
+

2cs

γ
√
Ti

[
Ri

√
log d+

GRi√
Ti

+
ρxR

2
i√

Ti
+Riσi

√
12 log(

3

δi
)

]
+
R2
i

T 2
i

.

Thus, for some other c, we have that

‖∆̂(Ti)‖2
1 ≤ c

s

γ

[
Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
+
Riσi√
Ti

√
12 log(

3

δi
)

]
+
R2
i

T 2
i

. (A.2.7)
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Combining the above inequality with error bound (A.1.4b) for θ̂i and using triangle

inequality leads to

‖∆∗(Ti)‖2
1 ≤ 2‖∆̂(Ti)‖2

1 + 2‖θ∗ − θ̂i‖2
1

≤ 2‖∆̂(Ti)‖2
1 +

64

γ2
s2λ2

i

≤ c′
s

γ

[
Ri

√
log d√
Ti

+
GRi

Ti
+
ρxR

2
i

Ti
+
Riσi√
Ti

√
12 log

3

δi

]
+
R2
i

T 2
i

.

Finally, in order to use θ̄(Ti) as the next prox center θ̃i+1, we would also like to

control the error ‖θ̄(Ti) − θ̂i+1‖2
1. Since λi+1 ≤ λi by assumption, we obtain the

same form of error bound as in (A.2.7). We want to run the epoch till all these

error terms drop to R2
i+1 := R2

i /2. Therefore, we set the epoch length Ti to ensure

that. All above conditions are met if we choose the epoch length

Ti = C

[
s2

γ2

[
log d+ 12σ2

i log(3/δi)

R2
i

]
+
sG

γRi

+
s

γ
ρx

]
, (A.2.8)

for a suitably large universal constant C. Note that since we consider the dominat-

ing terms in the final bound, the last two terms can be ignored. By design of Ti,

we have that

‖∆∗(Ti)‖2
1 ≤

c′√
C
R2
i ,

which completes this proof.
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A.2.6 Proof of Guarantees with Fixed Epoch Length, Sparse

Case

This is a special case of Theorem 3 (Appendix). The key difference between this

case and optimal epoch length setting of Theorem 3 is that in the latter we guaran-

teed error halving by the end of each epoch whereas with fixed epoch length that

statement may not be possible after the number of epochs becomes large enough.

Therefore, we need to show that in such case the error does not increase much to

invalidate our analysis. Let k∗ be the epoch number such that error halving holds

true until then. Next we demonstrate that error does not increase much for k > k∗.

Given a fixed epoch length T0 = O(log d), we define

k∗ := sup

{
i : 2j/2+1 ≤ cR1γ

s

√
T0

log d+ σ2
iw

2
for all epochs j ≤ i

}
, (A.2.9)

where w = log(6/δ).

First we show that if we run REASON 1 with fixed epoch length T0 it has error

halving behavior for the first k∗ epochs.

Lemma 9. For T0 = O(log d) and k∗ as in (A.2.9), we have

‖θ̃k − θ∗‖1 ≤ Rk and ‖θ̃k − θ̄k‖1 ≤ Rk for all 1 ≤ k ≤ k∗ + 1.
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with probability at least 1 − 3k exp(−w2/12). Under the same conditions, there

exists a universal constant c such that

‖θ̃k − θ∗‖2 ≤ c
Rk√
s

and ‖θ̃k − θ̄k‖2 ≤ c
Rk√
s

for all 2 ≤ k ≤ k∗ + 1.

Next, we analyze the behavior of REASON 1 after the first k∗ epochs. Since we

cannot guarantee error halving, we can also not guarantee that θ∗ remains feasible

at later epochs. We use Lemma 10 to control the error after the first k∗ epochs.

Lemma 10. Suppose that Assumptions A1 − A3 in the main text are satisfied at

epochs i = 1, 2, . . . . Assume that at some epoch k, the epoch center θ̃k satisfies the

bound ‖θ̃k− θ∗‖2 ≤ c1Rk/
√
s and that for all epochs j ≥ k, the epoch lengths satisfy

the bounds

s

γ

√
log d+ σ2

iw
2
i

Tj
≤ Rk

2
and

log d

Ti
≤ c2.

Then for all epochs j ≥ k, we have the error bound ‖qj−θ∗‖2
2 ≤ c2

R2
k

s
with probability

at least 1− 3
∑j

i=k+1 exp(−w2
i /12).

In order to check the condition on epoch length in Lemma 10, we notice that

with k∗ as in (A.2.9), we have

c
s

γ

√
log d+ σ2

iw
2

T0

≤ R12−k
∗/2−1 =

Rk∗+1

2
.
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Since we assume that constants σk are decreasing in k, the inequality also holds for

k ≥ k∗ + 1, therefore Lemma 10 applies in this setting.

The setting of epoch length in Theorem 1 ensures that the total number of

epochs we perform is

k0 = log

(
R1γ

s

√
T

log d+ σ2w2

)
.

Now we have two possibilities. Either k0 ≤ k∗ or k0 ≥ k∗. In the former, Lemma 9

ensures that the error bound ‖θ̃k0 − θ∗‖2
2 ≤ cR2

k0
/s. In the latter case, we use

Lemma 10 and get the error bound cR2
k∗/s. Substituting values of k0, k∗ in these

bounds completes the proof.

Proof of Lemma 9 and Lemma 10 follows directly from that of Lemma 5 and

Lemma 3 in [Agarwal et al., 2012b].

A.2.7 Proof of Guarantees for Sparse Graphical Model selection

Problem

Here we prove Corollary 1. According to C.1, in order to prove guarantees, we

first need to bound ‖zk+1 − zk‖1 and ‖zk‖∞. According to Equation (A.2.5) and

considering the imposed `1 bound, this is equivalent to bound ‖gk+1 − gk‖1 and

‖gk‖∞. The rest of the proof follows on lines of Theorem 1 proof. On the other

hand, Lipschitz property requires a bound on ‖gk‖1, which is much more stringent.
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Assuming we are in a close proximity of Θ∗, we can use Taylor approximation

to locally approximate Θ−1 by Θ∗−1 as in [Ravikumar et al., 2011]

Θ−1 = Θ∗−1 −Θ∗−1∆Θ∗−1 +R(∆),

where ∆ = Θ−Θ∗ and R(∆) is the remainder term. We have

‖gk+1 − gk‖1 ≤ |||Γ∗|||∞‖Θk+1 −Θk‖1,

and

‖gk‖∞ ≤ ‖gk − E(gk)‖∞ + ‖E(gk)‖∞

≤ ‖ek‖∞ + ‖Σ∗ −Θ−1
k ‖∞ ≤ σ + ‖Γ∗‖∞‖Θk+1 −Θk‖1.

The term ‖Θk+1−Θk‖1 is bounded by 2Ri by construction. We assume |||Γ∗|||∞ and

‖Γ∗‖∞ are bounded.

The error ∆ needs to be “small enough” for the R(∆) to be negligible, and we

now provide the conditions for this. By definition,R(∆) =
∑∞

k=2(−1)k(Θ∗−1∆)kΘ∗−1.

Using triangle inequality and sub-multiplicative property for Frobenious norm,

‖R(∆)‖F ≤
‖Θ∗−1‖F‖∆Θ∗−1‖2

F

1− ‖∆Θ∗−1‖F
.
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For ‖∆‖F ≤ 2Ri ≤ 0.5
‖Θ∗−1‖F

, we get

‖R(∆)‖F ≤ ‖Θ∗−1‖F.

We assume ‖Σ∗‖F is bounded.

Note that {Ri}kTi=1 is a decreasing sequence and we only need to bound R1.

Therefore, if the variables are closely-related we need to start with a small R1. For

weaker correlations, we can start in a bigger ball. The rest of the proof follows the

lines of proof for Theorem 3, by replacing G2 by |||Γ∗|||∞Ri(σ + ‖Γ∗‖∞Ri). Ignoring

the higher order terms gives us Corollary 1.

A.3 Guarantees for REASON 2

First, we provide guarantees for the theoretical case such that epoch length depends

on epoch radius. This provides intuition on how the algorithm is designed. The

fixed-epoch algorithm is a special case of this general framework. We first state and
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prove guarantees for general framework. Next, we leverage these results to prove

Theorem 1. Let the design parameters be set as

Ti ' C

[
(s+ r +

s+ r

γ
)2

(
log p+ β2(p)σ2

i log(6/δi)+

R2
i

)
+ (s+ r +

s+ r

γ
)

(
G

Ri

+ ρx

)]
,

(A.3.1)

λ2
i =

γ

(s+ r)
√
Ti

√
(R2

i + R̃2
i )log p+

G2(R2
i + R̃2

i )

Ti
+ β2(p)(R2

i + R̃2
i )σ

2
i log

3

δi

+
ρx(R

2
i + R̃2

i )

Ti
+
α2

p2
+
β2(p)σ2

Ti

(
log p+ log

1

δi

)
,

µ2
i = cµλ

2
i , ρ ∝

√
Ti log p

R2
i + R̃2

i

, ρx > 0, τ = ρ.

Theorem 11. Under assumptions A2− A6 and parameter settings as in (A.3.1),

there exists a constant c0 > 0 such that REASON 2 satisfies the following for all

T > kT ,

‖S̄(T )− S∗‖2
F + ‖L̄(T )− L∗‖2

F ≤

c0(s+ r)

T

[
log p+ β2(p)σ2

(
w2 + log kT

)]
+

(
1 +

s+ r

γ2p

)
α2

p
.

with probability at least 1− 6 exp(−w2/12) and

kT ' − log

(
(s+ r)2

γ2R2
1T

[
log p+ β2(p)σ2w2

])
.
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For Proof outline and detailed proof of Theorem 11 see Appendix A.3.1 and A.4

respectively.

A.3.1 Proof outline for Theorem 11

The foundation block for this proof is Proposition 3.

Proposition 3. Suppose f satisfies Assumptions A1− A6 with parameters γ and

σi respectively and assume that ‖S∗ − S̃i‖2
1 ≤ R2

i , ‖L∗ − L̃i‖2
1 ≤ R̃2

i . We apply the

updates in REASON 2 with parameters as in (A.3.1). Then, there exists a universal

constant c such that for any radius Ri, R̃i, R̃i = crRi, 0 ≤ cr ≤ 1,

f(M̄(Ti)) + λiφ(W̄ (Ti))− f(M̂i)− λiφ(Ŵ (Ti)) (A.3.2a)

≤

√
R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti

+
β(p)(Ri + R̃i)σi

√
12 log 3

δi√
Ti

+
β(p)G(Ri + R̃i)σi

√
12 log 3

δi

Ti
√

log p
,

‖S̄(Ti)− S∗‖2
1 ≤

c′√
C
R2
i + c(s+ r +

(s+ r)2

pγ2
)
α2

p
, (A.3.2b)

‖L̄(Ti)− L∗‖2
∗ ≤

c′√
C

1

1 + γ
R2
i + c

(s+ r)2

pγ2

α2

p
.

where both bounds are valid with probability at least 1− δi.

In order to prove Proposition 3, we need two more lemmas.

To move forward, we use the following notations: ∆(Ti) = Ŝi − S∗ + L̂i − L∗,

∆∗(Ti) = S̄(Ti) − S∗ + L̄(Ti) − L∗ and ∆̂(Ti) = S̄i − Ŝi + L̄i − L̂i. In addition
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∆S(Ti) = Ŝi − S∗, with alike notations for ∆L(Ti). For on and off support part of

∆(Ti), we use (∆(Ti))supp and (∆(Ti))suppc .

Lemma 12. At epoch i assume that ‖S∗ − S̃‖2
1 ≤ R2

i , ‖L∗ − L̃‖2
1 ≤ R̃2

i . Then the

errors ∆S(Ti),∆L(Ti) satisfy the bound

‖Ŝi − S∗‖2
F + ‖L̂i − L∗‖2

F ≤ c{sλ
2
i

γ2
+ r

µ2
i

γ2
}.

Lemma 13. Under the conditions of Proposition 3 and with parameter settings

(A.3.1), (A.3.1), we have

‖Ŝi − S̄(Ti)‖2
F + ‖L̂i − L̄(Ti)‖2

F

≤ 2

γ

√R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti

+
β(p)(Ri + R̃i)σi

√
12 log(3/δi)√

Ti
+
β(p)G(Ri + R̃i)σi

√
12 log(3/δi)

Ti
√

log p

)
+ (

2α
√
p

+
p

τTi
)2,

with probability at least 1− δi.

A.4 Proof of Theorem 11

The first step is to ensure that ‖S∗ − S̃i‖2
1 ≤ R2

i , ‖L∗ − L̃i‖2
1 ≤ R̃2

i holds at each

epoch so that Proposition 3 can be applied in a recursive manner. We prove this

in the same manner we proved Theorem 1, by induction on the epoch index. By
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construction, this bound holds at the first epoch. Assume that it holds for epoch

i. Recall that Ti is defined by (A.3.1) where C ≥ 1 is a constant we can choose.

By substituting this Ti in inequality (A.3.2b), the simplified bound (A.3.2b) further

yields

‖∆∗S(Ti)‖2
1 ≤

c′√
C
R2
i + c(s+ r +

(s+ r)2

pγ2
)
α2

p
,

Thus, by choosing C sufficiently large, we can ensure that ‖S̄(Ti)−S∗‖2
1 ≤ R2

i /2 :=

R2
i+1. Consequently, if S∗ is feasible at epoch i, it stays feasible at epoch i + 1.

Hence, we guaranteed the feasibility of S∗ throughout the run of algorithm by

induction. As a result, Lemma 12 and 13 apply and for R̃i = crRi, we find that

‖∆∗S(Ti)‖2
F ≤

1

s+ r
R2
i + (1 +

s+ r

γ2p
)
2α2

p
.

The bound holds with probability at least 1 − 3 exp(−w2
i /12). The same is true

for ‖∆∗L(Ti)‖2
F. Recall that R2

i = R2
12−(i−1). Since w2

i = w2 + 24 log i, we can

apply union bound to simplify the error probability as 1 − 6 exp(−w2/12). Let

δ = 6 exp(−w2/12), we write the bound in terms of δ, using w2 = 12 log(6/δ).
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Next we convert the error bound from its dependence on the number of epochs

kT to the number of iterations needed to complete kT epochs, i.e. T (K) =
∑k

i=1 Ti.

Using the same approach as in proof of Theorem 3, we get

kT ' − log
(s+ r + (s+ r)/γ)2

R2
1T

− log
[
log p+ 12β2(p)σ2w2

]
.

As a result

‖∆∗S(Ti)‖2
F ≤

C(s+ r)

T

[
log p+ β2(p)σ2

(
w2 + log kT )

]]
+
α2

p
.

For the low-rank part, we proved feasibility in proof of Equation (A.3.2b), conse-

quently The same bound holds for ‖∆∗L(Ti)‖2
F.

A.4.1 Proofs for Convergence within a Single Epoch for

Algorithm 3

We showed that our method is equivalent to running Bregman ADMM on M and

W = [S;L]. Consequently, our previous analysis for sparse case holds true for the

error bound on sum of loss function and regularizers within a single epoch. With
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ρ = c2

√
Ti, τ = ρ, c2 =

√
log p√
R2
i+R̃2

i

. We use the same approach as in Section A.2.1 for

bounds on dual variable Zk. Hence,

f(M̄(Ti)) + λiφ(W̄ (Ti))− f(M̂i)− λiφ(Ŵ (Ti))

≤ c2‖AŴ (Ti)− AW0‖2
F√

Ti
+
ρx‖M̂(Ti)−M0‖2

F
Ti

+
GRi

Ti
+
Ri

√
log p√
Ti

+

∑Ti
k=1 Tr(Ek, M̂i −Mk)

Ti

≤
[
c2√
Ti

+
ρx
Ti

]
‖Ŝi − S̃i + L̂i − L̃i‖2

F +
GRi

Ti
+
Ri

√
log p√
Ti

+

∑Ti
k=1 Tr(Ek, M̂i −Mk)

Ti
.

By the constraints enforced in the algorithm, we have

f(M̄(Ti)) + λiφ(W̄ (Ti))− f(M̂i)− λiφ(Ŵ (Ti))

≤

√
R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti
+

∑Ti
k=1 Tr(Ek, M̂i −Mk)

Ti
.

Lemma 14. The dual variable in REASON 2 is bounded. i.e.,

‖Zk‖1 ≤ G+ 2ρ0Ri, where ρ0 := ρx + ρ.

Proof. The proof follows the same line as in proof of Lemma 8 and replacing θ, y

by M,W where W = [S;L]. Hence,

133



‖Zk‖1 ≤ G+ 2ρ0Ri, where ρ0 := ρx + ρ.

�

A.4.2 Proof of Proposition 3: Equation (A.3.2a)

In this section we bound the term
∑Ti
k=1 Tr(Ek,M̂i−Mk)

Ti
. We have

Mk − M̂i = Sk − Ŝi + Lk − L̂i + (Zk+1 − Zk)/τ.

Hence,

[Tr(Ek, M̂i −Mk)]
2

≤ [‖Ek‖∞‖Sk − Ŝi‖1 + ‖Ek‖2
2‖Lk − L̂i‖∗ + ‖Ek‖∞‖(Zk+1 − Zk)/τ‖1]2

≤ [2Ri‖Ek‖∞ + 2R̃i‖Ek‖2 + (G+ 2ρ0Ri)/τ‖Ek‖∞]2

≤ ‖Ek‖2
2[2Ri + 2R̃i + (G+ 2ρ0Ri)/τ ]2.
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Consider the term ‖Ek‖2. Using Assumption A4, our previous approach in proof

of Equation (A.1.3a), holds true with addition of a β(p) term. Consequently,

f(M̄(Ti)) + λiφ(W̄ (Ti))− f(M̂i)− λiφ(Ŵ (Ti))

≤

√
R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti

+
β(p)(Ri + R̃i)σi

√
12 log(3/δi)√

Ti
+
β(p)G(Ri + R̃i)σi

√
12 log(3/δi)

Ti
√

log p
.

with probability at least 1− δi.

A.4.3 Proof of Lemma 12

We use Lemma 1 [Negahban et al., 2012] for designing λi and µi. This Lemma re-

quires that for optimization problem min
Θ
{L(Θ)+λiQ(Θ)}, we design the regularizer

coefficient λi ≥ 2Q∗(∇L(Θ∗)), where L is the loss function, Q is the regularizer and

Q∗ is the dual regularizer. For our case Θ stands for [S;L].

L(Θ) =
1

n

n∑
k=1

fk(Θ, x),

and

Q∗(∇L(Θ∗)) = Q∗

[
E(∇f(Θ∗) +

1

n

n∑
k=1

{∇fk(Θ∗))− E(∇f(Θ∗))}

]

= Q∗(
1

n

n∑
k=1

Ek),
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where Ek = gk − E(gk) is the error in gradient estimation as defined earlier.

Using Theorem 1 [Agarwal et al., 2012a] in this case, if we design

λi ≥ 4

∥∥∥∥∥ 1

n

n∑
k=1

Ek

∥∥∥∥∥
∞

+
4γα

p
and µi ≥ 4

∥∥∥∥∥ 1

n

n∑
k=1

Ek

∥∥∥∥∥
2

, (A.4.1)

then we have

‖Ŝi − S∗‖2
F + ‖L̂i − L∗‖2

F ≤ c{sλ
2
i

γ2
+ r

µ2
i

γ2
}. (A.4.2)

Lemma 15. Assume X ∈ Rp×p. If ‖X‖2 ≤ B almost surely then with probability

at least 1− δ we have

∥∥∥∥∥ 1

n

n∑
k=1

Xk − E(Xk)

∥∥∥∥∥
2

≤ 6B√
n

(√
log p+

√
log

1

δ

)
.

Note that this lemma is matrix Hoeffding bound and provides a loose bound on

matrix. Whereas using matrix Bernstein provided tighter results using E(EkE
>
k ).

Moreover, since the elementwise max norm ‖X‖∞ ≤ ‖X‖2, we use the same upper

bound for both norms.
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By definition E(Ek) = 0. According to Assumption A4, ‖Ek‖2 ≤ β(p)σ. Thus

it suffices to design

λi ≥
24β(p)σi√

Ti

(√
log p+

√
log

1

δi

)
+

4γα

p

and

µi ≥
24β(p)σi√

Ti

(√
log p+

√
log

1

δi

)
.

Then, we can use Equation (A.4.2).

A.4.4 Proof of Lemma 13

By LSC condition on X = S + L

γ

2
‖Ŝi − S̄(Ti) + L̂i − L̄(Ti)‖2

F

≤ f(X̄(Ti)) + λi‖S̄(Ti)‖1 + µi‖L̄(Ti)‖∗ − f(X̂i)− λi‖Ŝ(Ti)‖1 − µi‖L̂(Ti)‖∗

We want to use the following upper bound for the above term.

f(M̄(Ti)) + λiφ(X̄(Ti))− f(M̂i)− λiφ(X̂(Ti)) ≤√
R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti

+
β(p)(Ri + R̃i)σi

√
12 log 3

δi√
Ti

+
β(p)G(Ri + R̃i)σi

√
12 log 3

δi

Ti
,
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M̂i = X̂i, i.e., all the terms are the same except for f(M̄(Ti)), f(X̄(Ti)). We have

M̄(Ti) = X̄(Ti) + ZT
τTi

. This is a bounded and small term O(Ri/(Ti
√
Ti)). We

accept this approximation giving the fact that this is a higher order term compared

to O(1/
√
Ti) . Hence, it will not play a role in the final bound on the convergence

rate. Therefore,

γ

2
‖Ŝi − S̄(Ti) + L̂i − L̄(Ti)‖2

F (A.4.3)

≤

√
R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti

+
β(p)(Ri + R̃i)σi

√
12 log 3

δi√
Ti

+
β(p)G(Ri + R̃i)σi

√
12 log 3

δi

Ti
√

log p
,

with probability at least 1− δi.

For simplicity, we use

H1 =

√
R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti

+
β(p)(Ri + R̃i)σi

√
12 log 3

δi√
Ti

+
β(p)G(Ri + R̃i)σi

√
12 log 3

δi

Ti
√

log p
.

We have,

−γ
2

Tr(∆̂S∆̂L) =
γ

2
{‖∆̂S‖2

F + ‖∆̂L‖2
F} −

γ

2
{‖∆̂S + ∆̂L‖2

F},
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In addition,

γ‖Tr(∆̂S(Ti)∆̂L(Ti))| ≤ γ‖∆̂S(Ti)‖1‖∆̂L(Ti)‖∞.

We have,

‖∆̂L(Ti)‖∞ ≤ ‖L̂i‖∞ + ‖L̄(Ti)‖∞

‖L̄(Ti)‖∞ ≤ ‖Ȳ (Ti)‖∞ + ‖L̄(Ti)− Ȳ (Ti)‖∞

≤ ‖Ȳ (Ti)‖∞ + ‖
∑Ti−1

k=0 (Lk − Yk)
Ti

‖∞

= ‖Ȳ (Ti)‖∞ + ‖
∑Ti−1

k=0 (Uk − Uk+1)

τTi
‖∞

= ‖Ȳ (Ti)‖∞ + ‖−Uk+1

τTi
‖∞

≤ α

p
+

√
p

τTi
.

In the last step we incorporated the constraint ‖Y ‖∞ ≤ α
p
, and the fact that U0 = 0.

Moreover, we used

‖Uk+1‖∞ = ‖∇{‖L‖∗}‖∞ ≤
√

rank(L) ≤ √p.
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Last step is from the analysis of Watson [1992]. Therefore,

γ‖Tr(∆̂S(Ti)∆̂L(Ti))| ≤ γ(
2α

p
+

√
p

τTi
)‖∆̂S(Ti)‖1.

Consequently,

γ

2
‖∆̂S(Ti) + ∆̂L(Ti)‖2

F ≥
γ

2
{‖∆̂S(Ti)‖2

F + ‖∆̂L(Ti)‖2
F} −

γ

2
(
2α

p
+

√
p

τTi
)‖∆̂S(Ti)‖1.

Combining the above equation with (A.4.3), we get

γ

2
{‖∆̂S(Ti)‖2

F + ‖∆̂L(Ti)‖2
F} −

γ

2
(
2α

p
+

√
p

τTi
)‖∆̂S(Ti)‖1 ≤ H1.

Using ‖S‖1 ≤
√
p‖S‖F,

‖∆̂S(Ti)‖2
F + ‖∆̂L(Ti)‖2

F

≤ 2

γ
{

√
R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti

+
β(p)(Ri + R̃i)σi

√
12 log(3/δi)√

Ti

+
β(p)G(Ri + R̃i)σi

√
12 log(3/δi)

Ti
√

log p
}+ (

2α
√
p

+
p

τTi
)2,

with probability at least 1− δi.
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A.4.5 Proof of Proposition 3: Equation (A.3.2b)

Now we want to convert the error bound in (A.3.2a) from function values into

vectorized `1 and Frobenius-norm bounds. Since the error bound in (A.3.2a) holds

for the minimizer M̂i, it also holds for any other feasible matrix. In particular,

applying it to M∗ leads to,

f(M̄(Ti))− f(M∗) + λiφ(W̄ (Ti))− λiφ(W ∗)

≤

√
R2
i + R̃2

i

Ti

√
log p+

R2
i + R̃2

i

Ti
ρx +

G
√
R2
i + R̃2

i

Ti

+
β(p)(Ri + R̃i)σi

√
12 log(3/δi)√

Ti
+
β(p)G(Ri + R̃i)σi

√
12 log(3/δi)

Ti
√

log p
,

with probability at least 1− δi.

For the next step, we find a lower bound on the left hand side of this inequality.

f(M̄(Ti))− f(M∗) + λiφ(W̄ (Ti))− λiφ(W ∗) ≥

f(M∗)− f(M∗) + λiφ(W̄ (Ti))− λiφ(W ∗) =

λiφ(W̄ (Ti))− λiφ(W ∗),

where the first inequality results from the fact that M∗ optimizes M .

From here onward all equations hold with probability at least 1− δi. We have

φ(W̄ (Ti))− φ(W ∗) ≤ H1/λi. (A.4.4)
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i.e.

‖S̄(Ti)‖1 +
µi
λi
‖L̄(Ti)‖∗ ≤ ‖S∗‖1 +

µi
λi
‖L∗‖∗ +H1/λi

Using S̄(Ti) = ∆∗S + S∗, L̄(Ti) = ∆∗L + L∗. We split ∆∗S into its on-support and

off-support part. We also divide ∆∗L into its projection onto V and V ⊥. V is range

of L∗. Meaning ∀X ∈ V, ‖X‖∗ ≤ r. Therefore,

‖(S̄(Ti))supp‖1 ≥ ‖(S∗)supp‖1 − ‖(∆∗S)supp‖1

‖(S̄(Ti))suppc‖1 ≥ −‖(S∗)suppc‖1 + ‖(∆∗S)suppc‖1,

and

‖(L̄(Ti))V ‖∗ ≥ ‖(L∗)V ‖∗ − ‖(∆∗L)V ‖∗

‖(L̄(Ti))V ⊥‖∗ ≥ −‖(L∗)V ⊥‖∗ + ‖(∆∗L)V ⊥‖∗.

Consequently,

‖(∆∗S)suppc‖1 +
µi
λi
‖(∆∗L)V ⊥‖∗ ≤ ‖(∆∗S)supp‖1 +

µi
λi
‖(∆∗L)V ‖∗ +H1/λi. (A.4.5)
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∆∗S(Ti)− ∆̂S(Ti) = Ŝi − S∗. Therefore,

‖Ŝi − S∗‖1 =

‖(∆∗S(Ti))supp − (∆̂S(Ti))supp‖1 + ‖(∆∗S(Ti))suppc − (∆̂S(Ti))suppc‖1 ≥{
‖(∆∗S(Ti))supp‖1 − ‖(∆̂S(Ti))supp‖1

}
−
{
‖(∆∗S(Ti))suppc‖1 − ‖(∆̂S(Ti))suppc‖1

}
.

Hence,

‖(∆̂S(Ti))suppc‖1 − ‖(∆̂S(Ti))supp‖1

≤ ‖(∆∗S(Ti))suppc‖1 − ‖(∆∗S(Ti))supp‖1 + ‖Ŝi − S∗‖1.

As Equation (A.4.1) is satisfied, we can use Lemma 1 [Negahban et al., 2012].

Combining the result with Lemma 12, we have ‖Ŝi − S∗‖2
1 ≤ (4s + 3r)(s

λ2i
γ2

+

r
µ2i
γ2

). Consequently, further use of Lemma 12 and the inequality ‖(∆̂S(Ti))supp‖1 ≤
√
s‖∆̂(Ti)‖F allows us to conclude that there exists a universal constant c such that

‖∆̂S(Ti)‖2
1 ≤ 4s‖∆̂S(Ti)‖2

F + (H1/λi)
2 + c(s+ r)(s

λ2
i

γ2
+ r

µ2
i

γ2
)

+ cr
µ2
i

λ2
i

[
2

γ
H1 + (

α
√
p

+
p

τTi
)2 + s

λ2
i

γ2
+ r

µ2
i

γ2

]
≤ 4s

[
2

γ
H1 + (

α
√
p

+
p

τTi
)2

]
+ (H1/λi)

2 + c(s+ r)(s
λ2
i

γ2
+ r

µ2
i

γ2
)

+ cr
µ2
i

λ2
i

[
2

γ
H1 + (

α
√
p

+
p

τTi
)2 + s

λ2
i

γ2
+ r

µ2
i

γ2

]
,
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with probability at least 1− δi. Optimizing the above bound with choice of λi and

complying with the conditions in Lemma 15, leads to

λ2
i =

γ

s+ r
H1 +

α2

p2
+
β2(p)σ2

Ti

(
log p+ log

1

δ

)
.

Repeating the same calculations for ‖∆̂L(Ti)‖∗ results in

µ2
i = cµλ

2
i ,

we have

‖∆̂S(Ti)‖2
1 ≤ c(s+ r +

s+ r

γ
)H1 + c(s+ r)(1 +

s+ r

pγ2
)
α2

p
+ (s+ r)(

p2

τT 2
i

+
α

τTi
).

Therefore,

‖∆∗S(Ti)‖2
1 ≤ 2‖∆̂S(Ti)‖2

1 + 2‖S∗ − Ŝi‖2
1 (A.4.6)

≤ 2‖∆̂(Ti)‖2
1 + 8c(s+ r)(s

λ2
i

γ2
+ r

µ2
i

γ2
)

≤ c(s+ r +
s+ r

γ
)H1 + c(s+ r)(1 +

s+ r

pγ2
)
α2

p
+ (s+ r)(

p2

τT 2
i

+
α

τTi
).

Finally, in order to use S̄(Ti) as the next prox center S̃i+1, we would also like

to control the error ‖S̄(Ti) − Ŝi+1‖2
1. Without loss of generality, we can design

R̃i = crRi for any 0 ≤ cr ≤ 1. The result only changes in a constant factor. Hence,
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we use R̃i = Ri. Since λi+1 ≤ λi by assumption, we obtain the same form of error

bound as in (A.4.6). We want to run the epoch till all these error terms drop to

R2
i+1 := R2

i /2. It suffices to set the epoch length Ti to ensure that sum of all terms

in (A.4.6) is not greater that R2
i /2. All above conditions are met if we choose the

epoch length

Ti ' C(s+ r +
s+ r

γ
)2

[
log p+ 12β2(p)σ2

i log 6
δ

R2
i

]

+ C(s+ r +
s+ r

γ
)

β(p)Gσi

√
12 log 6

δ

Ri

√
log p

+
G

Ri

+ ρx

 ,
for a suitably large universal constant C. Then, we have that

‖∆∗S(Ti)‖2
1 ≤

c′√
C
R2
i + c(s+ r)(1 +

s+ r

pγ2
)
α2

p
.

Since the second part of the upper bound does not shrink in time, we stop where

two parts are equal. Namely, R2
i = c(s+ r)(1 + s+r

pγ2
)α

2

p
.

With similar analysis for L, we get

‖∆∗L(Ti)‖2
∗ ≤

c′√
C

1

1 + γ
R2
i + c

(s+ r)2

pγ2

α2

p
.

145



A.4.6 Proof of Guarantees with Fixed Epoch Length, Sparse

+ Low Rank Case

This is a special case of Theorem 11 (Appendix). Note that this fixed epoch length

results in a convergence rate that is worse by a factor of log p. The key difference

between this case and optimal epoch length setting of Theorem 11 is that in the

latter we guaranteed error halving by the end of each epoch whereas with fixed

epoch length that statement may not be possible after the number of epochs be-

comes large enough. Therefore, we need to show that in such case the error does

not increase much to invalidate our analysis. Let k∗ be the epoch number such

that error halving holds true until then. Next we demonstrate that error does not

increase much for k > k∗. The proof follows the same nature as that of Theorem 1

(in the main text), Section A.2.6, with

k∗ :=sup

{
i : 2

j
2

+1≤ cR1γ

s+ r

√
T0

log p+ β2(p)σ2
iw

2

}
,

for all epochs j ≤ i and

k0 = log

(
R1γ

s+ r

√
T

log p+ β2(p)σ2w2

)
.
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A.4.7 Proof of Guarantees for Sparse + Low Rank Graphical

Model selection Problem

Here we prove Corollary 2. Proof follows by using the bounds derived in Ap-

pendix A.2.7 for Taylor series expansion and following the lines of Theorem 11

proof as in Appendix A.4.

According to D.1, in order to prove guarantees, we first need to bound ‖zk+1 −

zk‖1 and ‖zk‖∞. According to Equation (A.2.5) and considering the imposed `1

bound, this is equivalent to bound ‖gk+1−gk‖1 and ‖gk‖∞.‖gk+1−gk‖1 and ‖gk‖∞.

The rest of the proof follows on lines of Theorem 2 proof. On the other hand,

Lipschitz property requires a bound on ‖gk‖1, which is much more stringent.

Assuming we are in a close proximity of M∗, we can use Taylor approximation

to locally approximate M−1 by M∗−1 as in [Ravikumar et al., 2011]

M−1 = M∗−1 −M∗−1∆M∗−1 +R(∆),

where ∆ = M −M∗ and R(∆) is the remainder term. We have

‖gk+1 − gk‖1 ≤ |||Γ∗|||∞‖Mk+1 −Mk‖1,
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and

‖gk‖∞ ≤ ‖gk − E(gk)‖∞ + ‖E(gk)‖∞

≤ ‖ek‖∞ + ‖Σ∗ −M−1
k ‖∞

≤ σ + ‖Γ∗‖∞‖Mk+1 −Mk‖1.

The term ‖Mk+1−Mk‖1 is bounded by 2R̆ by construction. We assume |||Γ∗|||∞ and

‖Γ∗‖∞ are bounded.

The error ∆ needs to be “small enough” for the R(∆) to be negligible, and we

now provide the conditions for this. By definition,R(∆) =
∑∞

k=2(−1)k(M∗−1∆)kM∗−1.

Using triangle inequality and sub-multiplicative property for Frobenious norm,

‖R(∆)‖F ≤
‖M∗−1‖F‖∆M∗−1‖2

F

1− ‖∆M∗−1‖F
.

For ‖∆‖F ≤ 2R̆ ≤ 0.5
‖M∗−1‖F

, we get

‖R(∆)‖F ≤ ‖M∗−1‖F.

We assume ‖Σ∗‖F is bounded.

Therefore, if the variables are closely-related we need to start with a small R̆.

For weaker correlations, we can start in a bigger ball. The rest of the proof follows

the lines of proof for Theorem 11, by replacing G2 by |||Γ∗|||∞R̆(σ + ‖Γ∗‖∞R̆).
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